V. Remarks on Associative Algebras

V.A. Algebras over a field

Let \mathbb{F} be a field. What would you call an \mathbb{F}-vector space where you can multiply vectors?
V.A.1. Definition. An \mathbb{F}-algebra (or algebra over \mathbb{F}) is a ring A, together with a scalar multiplication by \mathbb{F} which makes A into an \mathbb{F}-vector space and satisfies

$$
\begin{equation*}
f \cdot\left(a_{1} a_{2}\right)=\left(f \cdot a_{1}\right) a_{2}=a_{1}\left(f \cdot a_{2}\right) \tag{V.A.2}
\end{equation*}
$$

V.A.3. Equivalent Definition. A ring A together with an embedding $\varepsilon: \mathbb{F} \hookrightarrow C(A)$.

Proof that V.A. 1 implies V.A.3. Let A be an \mathbb{F}-algebra, and (for each $f \in \mathbb{F}$) set $\varepsilon(f):=f \cdot 1_{A} \in A$. Then:

- ε is a homomorphism (from \mathbb{F} to A): since A is a vector space over \mathbb{F}, we have $\left(f_{1}+f_{2}\right) \cdot a=f_{1} \cdot a+f_{2} \cdot a$ and $\left(f_{1} f_{2}\right) \cdot a=f_{1} \cdot\left(f_{2} \cdot a\right)$, and setting $a=1_{A}$ (and using (V.A.2)) does the job;
- ε is injective because \mathbb{F} is a field; and
- $\varepsilon(f) \in C(A)$ because $a \varepsilon(f)=a\left(f \cdot 1_{A}\right)=f \cdot\left(a 1_{A}\right)=f \cdot\left(1_{A} a\right)=$ $\left(f \cdot 1_{A}\right) a=\varepsilon(f) a$.
[The other direction is left to you.]
We will now stop writing the ".". Also, notice that ε embeds \mathbb{F} as a subring of A whose elements commute with everything; so we can identify \mathbb{F} with this subring, and drop " ε ".
V.A.4. EXAMPLES. (i) Field extensions \mathbb{E} / \mathbb{F} : these are, by definition, fields containing \mathbb{F}.
(ii) Polynomial algebras $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$.
(iii) Product algebras $\mathbb{F} \times \cdots \times \mathbb{F}$.
(iv) Matrix algebras $M_{n}(\mathbb{F})$ ($=$ the ring of endomorphisms of an n dimensional \mathbb{F}-vector space).
(v) Group algebra $\mathbb{F}[G]$ (of a finite group G).
(vi) Ring of endomorphisms of an $\mathbb{F}[\lambda]$-module.
(vii) Quaternion algebras (e.g., \mathbb{H} as an \mathbb{R}-algebra; or the rational quaternion algebras from HW 6 \#6).
(viii) Exterior algebras (defined below).
V.A.5. Definition. $A^{\prime} \subset A$ is an \mathbb{F}-subalgebra if A^{\prime} is a sub-\mathbb{F}-vector space and subring. The \mathbb{F}-subalgebra generated by a set $\mathcal{S} \subset A$ is

$$
\mathbb{F}[\mathcal{S}]:=\bigcap_{\substack{A^{\prime} \subset A \text { subalg. } \\
A^{\prime} \supset \mathcal{S}}} A^{\prime}=\left\{\begin{array}{l}
\text { elements of } A \text { that can be written } \\
\text { as polynomials over } \mathbb{F} \text { in }\{1\} \cup \mathcal{S}
\end{array}\right\} .
$$

(So there is an obvious notion of finitely generated \mathbb{F}-algebra; this is much weaker than finite-dimensionality of A as vector space over \mathbb{F}.)
V.A.6. Definition. Officially, $I \subset A$ is an (algebra) ideal if I is an ideal in the ring A which is an \mathbb{F}-vector subspace. But in point of fact, since $\mathbb{F} \subset A$, any ring-ideal of A is already closed under multiplication by \mathbb{F}, hence also an algebra-ideal; so there's no difference.

Given an ideal $I \subset A$, the quotient A / I has an \mathbb{F}-algebra structure: the composition $\mathbb{F} \hookrightarrow A \rightarrow A / I$ is still injective by (III.F.1).
V.A.7. Definition. A map $\alpha: A \rightarrow B$ of \mathbb{F}-algebras is an \mathbb{F} algebra homomorphism if it is a ring homomorphism which is \mathbb{F} linear (i.e., $\alpha(f a)=f \alpha(a)$ for all $f \in \mathbb{F}$ and $a \in A$).

As usual, we get a "Fundamental Theorem" to the effect that $I:=$ $\operatorname{ker}(\alpha)$ is an (algebra) ideal and there exists $\bar{\alpha}$ such that

commutes.
There is also an algebro-theoretic version of Cayley's theorem:
V.A.8. Theorem. Any \mathbb{F}-algebra A is isomorphic to a subalgebra of an algebra of endomorphisms of a vector space.

Proof. Consider A as an \mathbb{F}-vector space, and map

$$
\begin{aligned}
\ell: A & \longrightarrow \operatorname{End}_{\mathbb{F}}(A) \\
a & \longmapsto \ell_{a}:=\text { left-multiplication by } a .
\end{aligned}
$$

Since A is an algebra,

$$
\ell_{a}(f \alpha)=a(f \alpha)=f(a \alpha)=f \ell_{a}(\alpha)
$$

$\Longrightarrow \quad \ell_{a} \in \operatorname{End}_{\mathbb{F}}(A)$. Moreover, we know that ℓ is an injective ring homomorphism. ${ }^{1}$ Finally, ℓ is a homomorphism of \mathbb{F}-vector spaces, since by (V.A.2) we have $\ell_{f a}(\alpha)=(f a)(\alpha)=f(a \alpha)=f \ell_{a}(\alpha)$ and thus $\ell_{f a}=f \ell_{a}$.

Exterior algebras. For this extended example, start with a vector space V / \mathbb{F} of dimension n (without a multiplication law, of course). We would like an algebra A generated by V such that

$$
\begin{equation*}
v^{2}=0 \quad(\forall v \in V) \tag{V.A.9}
\end{equation*}
$$

Let $\left\{u_{1}, \ldots, u_{n}\right\} \subset V$ be a basis. Then (V.A.9) gives

$$
0=\left(u_{i}+u_{j}\right)^{2}-u_{i}^{2}-u_{j}^{2}=u_{i} u_{j}+u_{j} u_{i} \quad \Longrightarrow
$$

$$
\begin{equation*}
u_{i} u_{j}=-u_{j} u_{i} . \tag{V.A.10}
\end{equation*}
$$

If we take $i_{1}<\cdots<i_{k}$, then this yields

$$
\begin{equation*}
u_{i_{\sigma(1)}} \cdots u_{i_{\sigma(k)}}=\operatorname{sgn}(\sigma) u_{i_{1}} \cdots u_{i_{k}} \quad\left(\forall \sigma \in \mathfrak{S}_{k}\right) \tag{V.A.11}
\end{equation*}
$$

since $\operatorname{sgn}(\sigma)=(-1)^{\#}$ of transpositions in σ and σ can be built from adjacent transpositions (as in (V.A.10)). Henceforth, we shall write " \wedge " for our product and make the formal

[^0]V.A.12. Definition. $\Lambda_{\mathbb{F}}^{\bullet} V$ is the \mathbb{F}-algebra with

- (F-vector space) basis consisting of monomials ${ }^{2}$

$$
u_{\mathcal{I}}:=u_{i_{1}} \wedge \cdots \wedge u_{i_{k}} \quad\left(i_{1}<\cdots<i_{k}\right)
$$

where $\mathcal{I}=\left\{i_{1}, \ldots, i_{k}\right\}$ ranges over subsets of $\{1, \ldots, n\}$,

- product

$$
u_{\mathcal{I}} \wedge u_{\mathcal{J}}= \begin{cases}0, & \text { if } \mathcal{I} \cap \mathcal{J} \neq \varnothing \\ \operatorname{sgn}\left(\sigma_{\mathcal{I} \mathcal{J}}\right) u_{\mathcal{I} \cup \mathcal{J}}, & \text { if } \mathcal{I} \cap \mathcal{J}=\varnothing\end{cases}
$$

where $\sigma_{\mathcal{I} \mathcal{J}}$ shuffles \mathcal{I} and \mathcal{J} together, and

- identity $u_{\varnothing}=1$.

We have $\operatorname{dim}_{\mathbb{F}}\left(\wedge_{\mathfrak{F}}^{\bullet} V\right)=\sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n}$, and

$$
\begin{equation*}
\Lambda_{\mathbb{F}}^{\bullet} V=\oplus_{k} \wedge_{\mathbb{F}}^{k} V \tag{V.A.13}
\end{equation*}
$$

where $\Lambda_{\mathbb{F}}^{k} V$ is the subspace spanned by monomials of degree k.
V.A.14. Example. We illustrate the product: taking $\mathcal{I}=\{1,3,6\}$ and $\mathcal{J}=\{2,5\}$, we "shuffle" them together by jumping 2 over 3 and 6 , then 5 over 6 , for a total of three transpositions. Hence

$$
(\underbrace{u_{1} \wedge u_{3} \wedge u_{6}}_{u_{\mathcal{I}}}) \wedge(\underbrace{u_{2} \wedge u_{5}}_{u_{\mathcal{J}}})=(-1)^{3} u_{1} \wedge u_{2} \wedge u_{3} \wedge u_{5} \wedge u_{6}=-u_{\mathcal{I} \cup \mathcal{J}} .
$$

V.A.15. Proposition. Let $B=\left(b_{i j}\right) \in M_{n}(\mathbb{F})$. Then
$\left(b_{11} u_{1}+\cdots+b_{n 1} u_{n}\right) \wedge \cdots \wedge\left(b_{n 1} u_{1}+\cdots+b_{n n} u_{n}\right)=(\operatorname{det}(B)) u_{1} \wedge \cdots \wedge u_{n}$.
Proof. Expanding the LHS gives

$$
\sum_{i_{1}, \ldots, i_{n}}\left(b_{i_{1}, 1} \cdots b_{i_{n}, n}\right) u_{i_{1}} \wedge \cdots \wedge u_{i_{n}} .
$$

Since $v \wedge v=0$, terms with $i_{j}=i_{k}$ for $j \neq k$ vanish, and this becomes

$$
\begin{aligned}
\sum_{\sigma \in \mathfrak{S}_{n}}\left(b_{\sigma(1), 1} \cdots b_{\sigma(n), n}\right) u_{\sigma(1)} & \wedge \cdots \wedge u_{\sigma(n)} \\
& =\left(\sum_{\sigma}\left(\prod_{i} b_{\sigma(i), i}\right) \operatorname{sgn}(\sigma)\right) u_{1} \wedge \cdots \wedge u_{n}
\end{aligned}
$$

where the parenthetical quantity is just $\operatorname{det}(B)$.

[^1]V.A.16. Theorem. Assume $|\mathbb{F}|=\infty$, let $Q \in \mathbb{F}\left[x_{11}, x_{12}, \ldots, x_{n n}\right]=$: $\mathbb{F}\left[\left\{x_{i j}\right\}\right]$ be a homogeneous polynomial of degree q in n^{2} variables, and define $Q(B):=Q\left(\left\{b_{i j}\right\}\right)$ for matrices $B \in M_{n}(\mathbb{F})$. Assume that $Q\left(\mathbb{1}_{n}\right)=1$ and $Q\left(B B^{\prime}\right)=Q(B) Q\left(B^{\prime}\right)$. Then Q is a power of det.

SKETCH. Since Q is homogeneous, (V.A.17)

$$
Q(B) Q(\operatorname{adj} B)=Q\left((\operatorname{det} B) \mathbb{1}_{n}\right)=(\operatorname{det} B)^{q} Q\left(\mathbb{1}_{n}\right)=(\operatorname{det} B)^{q} .
$$

Writing $X=\left(x_{i j}\right)$, set $P(X):=Q(X) Q(\operatorname{adj} X)-(\operatorname{det} X)^{q} \in \mathbb{F}\left[\left\{x_{i j}\right\}\right]$. Since nontrivial polynomials over an infinite field do not evaluate to zero everywhere, but $P(B)=0$ for all B by (V.A.17), we must have $P=0$. Hence $Q(X) Q(\operatorname{adj} X)=(\operatorname{det} X)^{q}$ in $\mathbb{F}\left[\left\{x_{i j}\right\}\right]$ and so $Q(X) \mid(\operatorname{det} X)^{q}$. But $\mathbb{F}\left[\left\{x_{i j}\right\}\right]$ is a UFD, and so the result is clear if we know that $\operatorname{det} X$ is irreducible in $\mathbb{F}\left[\left\{x_{i j}\right\}\right]$. This is proved in [Jacobson].

Exterior algebras are ubiquitous in algebra (esp. representation theory) and geometry (differential forms).

[^0]: ${ }^{1}$ Why? Recall $\ell_{a}=0 \Longrightarrow 0=\ell_{a} 1=a \cdot 1=a$.

[^1]: ${ }^{2}$ The degree of the monomial is $k=|\mathcal{I}|$.

