V. Remarks on Associative Algebras

V.A. Algebras over a field

Let \mathbb{F} be a field. What would you call an \mathbb{F} -vector space where you can multiply vectors?

V.A.1. DEFINITION. An **F**-algebra (or algebra over **F**) is a ring *A*, together with a scalar multiplication by **F** which makes *A* into an **F**-vector space and satisfies

(V.A.2)
$$f \cdot (a_1 a_2) = (f \cdot a_1)a_2 = a_1(f \cdot a_2).$$

V.A.3. EQUIVALENT DEFINITION. A ring *A* together with an embedding $\varepsilon \colon \mathbb{F} \hookrightarrow C(A)$.

PROOF THAT V.A.1 IMPLIES V.A.3. Let *A* be an \mathbb{F} -algebra, and (for each $f \in \mathbb{F}$) set $\varepsilon(f) := f \cdot 1_A \in A$. Then:

- *ε* is a homomorphism (from F to A): since A is a vector space over F, we have (f₁ + f₂) · a = f₁ · a + f₂ · a and (f₁f₂) · a = f₁ · (f₂ · a), and setting a = 1_A (and using (V.A.2)) does the job;
- ε is injective because \mathbb{F} is a field; and
- $\varepsilon(f) \in C(A)$ because $a\varepsilon(f) = a(f \cdot 1_A) = f \cdot (a1_A) = f \cdot (1_A a) = (f \cdot 1_A)a = \varepsilon(f)a$.

[The other direction is left to you.]

We will now stop writing the " \cdot ". Also, notice that ε embeds \mathbb{F} as a subring of *A* whose elements commute with everything; so we can identify \mathbb{F} with this subring, and drop " ε ".

V.A.4. EXAMPLES. (i) **Field extensions** \mathbb{E}/\mathbb{F} : these are, by definition, fields containing \mathbb{F} .

(ii) Polynomial algebras $\mathbb{F}[x_1, \ldots, x_n]$.

(iii) Product algebras $\mathbb{F} \times \cdots \times \mathbb{F}$.

(iv) Matrix algebras $M_n(\mathbb{F})$ (= the ring of endomorphisms of an *n*-dimensional \mathbb{F} -vector space).

(v) Group algebra $\mathbb{F}[G]$ (of a finite group *G*).

(vi) Ring of endomorphisms of an $\mathbb{F}[\lambda]$ -module.

(vii) Quaternion algebras (e.g., \mathbb{H} as an \mathbb{R} -algebra; or the rational quaternion algebras from HW 6 #6).

(viii) Exterior algebras (defined below).

V.A.5. DEFINITION. $A' \subset A$ is an **F**-subalgebra if A' is a sub-**F**-vector space *and* subring. The **F**-subalgebra generated by a set $S \subset A$ is

$$\mathbb{F}[\mathcal{S}] := \bigcap_{\substack{A' \subset A \text{ subalg.} \\ A' \supset \mathcal{S}}} A' = \left\{ \begin{array}{l} \text{elements of } A \text{ that can be written} \\ \text{as polynomials over } \mathbb{F} \text{ in } \{1\} \cup \mathcal{S} \end{array} \right\}.$$

1

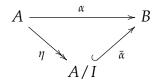
(So there is an obvious notion of finitely generated \mathbb{F} -algebra; this is much weaker than finite-*dimensionality* of A as vector space over \mathbb{F} .)

V.A.6. DEFINITION. Officially, $I \subset A$ is an **(algebra) ideal** if I is an ideal in the ring A which is an \mathbb{F} -vector subspace. But in point of fact, since $\mathbb{F} \subset A$, any ring-ideal of A is already closed under multiplication by \mathbb{F} , hence also an algebra-ideal; so there's no difference.

Given an ideal $I \subset A$, the quotient A/I has an \mathbb{F} -algebra structure: the composition $\mathbb{F} \hookrightarrow A \twoheadrightarrow A/I$ is still injective by (III.F.1).

V.A.7. DEFINITION. A map $\alpha : A \rightarrow B$ of \mathbb{F} -algebras is an \mathbb{F} -**algebra homomorphism** if it is a ring homomorphism which is \mathbb{F} linear (i.e., $\alpha(fa) = f\alpha(a)$ for all $f \in \mathbb{F}$ and $a \in A$).

As usual, we get a "Fundamental Theorem" to the effect that $I := ker(\alpha)$ is an (algebra) ideal and there exists $\bar{\alpha}$ such that



250

commutes.

There is also an algebro-theoretic version of Cayley's theorem:

V.A.8. THEOREM. Any \mathbb{F} -algebra A is isomorphic to a subalgebra of an algebra of endomorphisms of a vector space.

PROOF. Consider *A* as an \mathbb{F} -vector space, and map

 $\ell \colon A \longrightarrow \operatorname{End}_{\mathbb{F}}(A)$ $a \longmapsto \ell_a := \text{left-multiplication by } a.$

Since *A* is an algebra,

$$\ell_a(f\alpha) = a(f\alpha) = f(a\alpha) = f\ell_a(\alpha)$$

⇒ $\ell_a \in \operatorname{End}_{\mathbb{F}}(A)$. Moreover, we know that ℓ is an injective ring homomorphism.¹ Finally, ℓ is a homomorphism of \mathbb{F} -vector spaces, since by (V.A.2) we have $\ell_{fa}(\alpha) = (fa)(\alpha) = f(a\alpha) = f\ell_a(\alpha)$ and thus $\ell_{fa} = f\ell_a$.

Exterior algebras. For this extended example, start with a vector space V/\mathbb{F} of dimension *n* (without a multiplication law, of course). We would like an algebra *A* generated by *V* such that

$$(V.A.9) v^2 = 0 (\forall v \in V)$$

Let $\{u_1, \ldots, u_n\} \subset V$ be a basis. Then (V.A.9) gives

$$0 = (u_i + u_j)^2 - u_i^2 - u_j^2 = u_i u_j + u_j u_i \implies$$

 $(V.A.10) u_i u_j = -u_j u_i.$

If we take $i_1 < \cdots < i_k$, then this yields

(V.A.11)
$$u_{i_{\sigma(1)}} \cdots u_{i_{\sigma(k)}} = \operatorname{sgn}(\sigma) u_{i_1} \cdots u_{i_k} \quad (\forall \sigma \in \mathfrak{S}_k)$$

since $sgn(\sigma) = (-1)^{\# of transpositions in \sigma}$ and σ can be built from *adjacent* transpositions (as in (V.A.10)). Henceforth, we shall write " \wedge " for our product and make the formal

¹Why? Recall $\ell_a = 0 \implies 0 = \ell_a 1 = a \cdot 1 = a$.

V.A.12. DEFINITION. $\bigwedge_{\mathbb{F}}^{\bullet} V$ is the \mathbb{F} -algebra with

• (\mathbb{F} -vector space) basis consisting of *monomials*²

 $u_{\mathcal{I}} := u_{i_1} \wedge \cdots \wedge u_{i_k} \quad (i_1 < \cdots < i_k)$

where $\mathcal{I} = \{i_1, \ldots, i_k\}$ ranges over subsets of $\{1, \ldots, n\}$,

• product

$$u_{\mathcal{I}} \wedge u_{\mathcal{J}} = \begin{cases} 0, & \text{if } \mathcal{I} \cap \mathcal{J} \neq \emptyset \\ \operatorname{sgn}(\sigma_{\mathcal{I}\mathcal{J}}) u_{\mathcal{I} \cup \mathcal{J}}, & \text{if } \mathcal{I} \cap \mathcal{J} = \emptyset \end{cases}$$

where $\sigma_{\mathcal{I},\mathcal{I}}$ shuffles \mathcal{I} and \mathcal{J} together, and

• identity $u_{\emptyset} = 1$.

We have $\dim_{\mathbb{F}}(\bigwedge_{\mathbb{F}}^{\bullet} V) = \sum_{k=0}^{n} {n \choose k} = (1+1)^{n} = 2^{n}$, and (V.A.13) $\bigwedge_{\mathbb{F}}^{\bullet} V = \bigoplus_{k} \bigwedge_{\mathbb{F}}^{k} V$,

where $\bigwedge_{\mathbb{F}}^{k} V$ is the subspace spanned by monomials of degree *k*.

V.A.14. EXAMPLE. We illustrate the product: taking $\mathcal{I} = \{1, 3, 6\}$ and $\mathcal{J} = \{2, 5\}$, we "shuffle" them together by jumping 2 over 3 and 6, then 5 over 6, for a total of three transpositions. Hence

$$(\underbrace{u_1 \wedge u_3 \wedge u_6}_{u_{\mathcal{I}}}) \wedge (\underbrace{u_2 \wedge u_5}_{u_{\mathcal{J}}}) = (-1)^3 u_1 \wedge u_2 \wedge u_3 \wedge u_5 \wedge u_6 = -u_{\mathcal{I} \cup \mathcal{J}}.$$

V.A.15. PROPOSITION. Let $B = (b_{ij}) \in M_n(\mathbb{F})$. Then

$$(b_{11}u_1 + \dots + b_{n1}u_n) \wedge \dots \wedge (b_{n1}u_1 + \dots + b_{nn}u_n) = (\det(B)) u_1 \wedge \dots \wedge u_n$$

PROOF. Expanding the LHS gives

$$\sum_{i_1,\ldots,i_n} (b_{i_1,1}\cdots b_{i_n,n}) u_{i_1}\wedge\cdots\wedge u_{i_n}.$$

Since $v \wedge v = 0$, terms with $i_j = i_k$ for $j \neq k$ vanish, and this becomes

$$\sum_{\sigma \in \mathfrak{S}_n} (b_{\sigma(1),1} \cdots b_{\sigma(n),n}) u_{\sigma(1)} \wedge \cdots \wedge u_{\sigma(n)}$$

= $\left(\sum_{\sigma} (\prod_i b_{\sigma(i),i}) \operatorname{sgn}(\sigma) \right) u_1 \wedge \cdots \wedge u_n,$

where the parenthetical quantity is just det(B).

²The *degree* of the monomial is $k = |\mathcal{I}|$.

V.A.16. THEOREM. Assume $|\mathbb{F}| = \infty$, let $Q \in \mathbb{F}[x_{11}, x_{12}, ..., x_{nn}] =:$ $\mathbb{F}[\{x_{ij}\}]$ be a homogeneous polynomial of degree q in n^2 variables, and define $Q(B) := Q(\{b_{ij}\})$ for matrices $B \in M_n(\mathbb{F})$. Assume that $Q(\mathbb{1}_n) = 1$ and Q(BB') = Q(B)Q(B'). Then Q is a power of det.

SKETCH. Since *Q* is homogeneous, (V.A.17)

 $Q(B)Q(\operatorname{adj} B) = Q((\det B)\mathbb{1}_n) = (\det B)^q Q(\mathbb{1}_n) = (\det B)^q.$

Writing $X = (x_{ij})$, set $P(X) := Q(X)Q(adjX) - (det X)^q \in \mathbb{F}[\{x_{ij}\}]$. Since nontrivial polynomials over an infinite field do not evaluate to zero everywhere, but P(B) = 0 for all B by (V.A.17), we must have P = 0. Hence $Q(X)Q(adjX) = (det X)^q$ in $\mathbb{F}[\{x_{ij}\}]$ and so $Q(X) \mid (det X)^q$. But $\mathbb{F}[\{x_{ij}\}]$ is a UFD, and so the result is clear if we know that det X is irreducible in $\mathbb{F}[\{x_{ij}\}]$. This is proved in [Jacobson].

Exterior algebras are ubiquitous in algebra (esp. representation theory) and geometry (differential forms).