
V. Remarks on Associative Algebras

V.A. Algebras over a field

Let F be a field. What would you call an F-vector space where
you can multiply vectors?

V.A.1. DEFINITION. An F-algebra (or algebra over F) is a ring
A, together with a scalar multiplication by F which makes A into an
F-vector space and satisfies

(V.A.2) f · (a1a2) = ( f · a1)a2 = a1( f · a2).

V.A.3. EQUIVALENT DEFINITION. A ring A together with an em-
bedding ε : F ↪→ C(A).

PROOF THAT V.A.1 IMPLIES V.A.3. Let A be an F-algebra, and
(for each f ∈ F) set ε( f ) := f · 1A ∈ A. Then:

• ε is a homomorphism (from F to A): since A is a vector space over
F, we have ( f1 + f2) · a = f1 · a + f2 · a and ( f1 f2) · a = f1 · ( f2 · a),
and setting a = 1A (and using (V.A.2)) does the job;
• ε is injective because F is a field; and
• ε( f ) ∈ C(A) because aε( f ) = a( f · 1A) = f · (a1A) = f · (1Aa) =
( f · 1A)a = ε( f )a.

[The other direction is left to you.] �

We will now stop writing the “·”. Also, notice that ε embeds F as
a subring of A whose elements commute with everything; so we can
identify F with this subring, and drop “ε”.

V.A.4. EXAMPLES. (i) Field extensions E/F: these are, by defini-
tion, fields containing F.
(ii) Polynomial algebras F[x1, . . . , xn].
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(iii) Product algebras F× · · · ×F.
(iv) Matrix algebras Mn(F) (= the ring of endomorphisms of an n-
dimensional F-vector space).
(v) Group algebra F[G] (of a finite group G).
(vi) Ring of endomorphisms of an F[λ]-module.
(vii) Quaternion algebras (e.g., H as an R-algebra; or the rational
quaternion algebras from HW 6 #6).
(viii) Exterior algebras (defined below).

V.A.5. DEFINITION. A′ ⊂ A is an F-subalgebra if A′ is a sub-
F-vector space and subring. The F-subalgebra generated by a set
S ⊂ A is

F[S ] :=
⋂

A′ ⊂ A subalg.

A′ ⊃ S

A′ =

{
elements of A that can be written
as polynomials over F in {1} ∪ S

}
.

(So there is an obvious notion of finitely generated F-algebra; this is
much weaker than finite-dimensionality of A as vector space over F.)

V.A.6. DEFINITION. Officially, I ⊂ A is an (algebra) ideal if I is
an ideal in the ring A which is an F-vector subspace. But in point of
fact, since F ⊂ A, any ring-ideal of A is already closed under multi-
plication by F, hence also an algebra-ideal; so there’s no difference.

Given an ideal I ⊂ A, the quotient A/I has an F-algebra struc-
ture: the composition F ↪→ A� A/I is still injective by (III.F.1).

V.A.7. DEFINITION. A map α : A → B of F-algebras is an F-
algebra homomorphism if it is a ring homomorphism which is F-
linear (i.e., α( f a) = f α(a) for all f ∈ F and a ∈ A).

As usual, we get a “Fundamental Theorem” to the effect that I :=
ker(α) is an (algebra) ideal and there exists ᾱ such that

A α //

η !! !!

B

A/I
. � ᾱ

==
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commutes.
There is also an algebro-theoretic version of Cayley’s theorem:

V.A.8. THEOREM. Any F-algebra A is isomorphic to a subalgebra of
an algebra of endomorphisms of a vector space.

PROOF. Consider A as an F-vector space, and map

` : A −→ EndF(A)

a 7−→ `a := left-multiplication by a.

Since A is an algebra,

`a( f α) = a( f α) = f (aα) = f `a(α)

=⇒ `a ∈ EndF(A). Moreover, we know that ` is an injective ring
homomorphism.1 Finally, ` is a homomorphism of F-vector spaces,
since by (V.A.2) we have ` f a(α) = ( f a)(α) = f (aα) = f `a(α) and
thus ` f a = f `a. �

Exterior algebras. For this extended example, start with a vector
space V/F of dimension n (without a multiplication law, of course).
We would like an algebra A generated by V such that

(V.A.9) v2 = 0 (∀v ∈ V).

Let {u1, . . . , un} ⊂ V be a basis. Then (V.A.9) gives

0 = (ui + uj)
2 − u2

i − u2
j = uiuj + ujui =⇒

(V.A.10) uiuj = −ujui.

If we take i1 < · · · < ik, then this yields

(V.A.11) uiσ(1) · · · uiσ(k) = sgn(σ)ui1 · · · uik (∀σ ∈ Sk)

since sgn(σ) = (−1)# of transpositions in σ and σ can be built from adja-
cent transpositions (as in (V.A.10)). Henceforth, we shall write “∧”
for our product and make the formal

1Why? Recall `a = 0 =⇒ 0 = `a1 = a · 1 = a.
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V.A.12. DEFINITION.
∧•

F V is the F-algebra with

• (F-vector space) basis consisting of monomials2

uI := ui1 ∧ · · · ∧ uik (i1 < · · · < ik)

where I = {i1, . . . , ik} ranges over subsets of {1, . . . , n},
• product

uI ∧ uJ =

{
0, if I ∩ J 6= ∅
sgn(σIJ )uI∪J , if I ∩ J = ∅

where σIJ shuffles I and J together, and
• identity u∅ = 1.

We have dimF(
∧•

F V) = ∑n
k=0 (

n
k) = (1 + 1)n = 2n, and

(V.A.13)
∧•

FV =
⊕

k
∧k

FV,

where
∧k

F V is the subspace spanned by monomials of degree k.

V.A.14. EXAMPLE. We illustrate the product: taking I = {1, 3, 6}
and J = {2, 5}, we “shuffle” them together by jumping 2 over 3 and
6, then 5 over 6, for a total of three transpositions. Hence

(u1 ∧ u3 ∧ u6︸ ︷︷ ︸
uI

) ∧ (u2 ∧ u5︸ ︷︷ ︸
uJ

) = (−1)3u1 ∧ u2 ∧ u3 ∧ u5 ∧ u6 = −uI∪J .

V.A.15. PROPOSITION. Let B = (bij) ∈ Mn(F). Then

(b11u1 + · · ·+ bn1un)∧ · · · ∧ (bn1u1 + · · ·+ bnnun) = (det(B)) u1 ∧ · · · ∧ un.

PROOF. Expanding the LHS gives

∑i1,...,in(bi1,1 · · · bin,n)ui1 ∧ · · · ∧ uin .

Since v∧ v = 0, terms with ij = ik for j 6= k vanish, and this becomes

∑σ∈Sn(bσ(1),1 · · · bσ(n),n)uσ(1) ∧ · · · ∧ uσ(n)

=
(

∑σ(∏ibσ(i),i)sgn(σ)
)

u1 ∧ · · · ∧ un,

where the parenthetical quantity is just det(B). �

2The degree of the monomial is k = |I|.
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V.A.16. THEOREM. Assume |F| = ∞, let Q ∈ F[x11, x12, . . . , xnn] =:
F[{xij}] be a homogeneous polynomial of degree q in n2 variables, and de-
fine Q(B) := Q({bij}) for matrices B ∈ Mn(F). Assume that Q(1n) = 1
and Q(BB′) = Q(B)Q(B′). Then Q is a power of det.

SKETCH. Since Q is homogeneous,
(V.A.17)

Q(B)Q(adjB) = Q((det B)1n) = (det B)qQ(1n) = (det B)q.

Writing X = (xij), set P(X) := Q(X)Q(adjX)− (det X)q ∈ F[{xij}].
Since nontrivial polynomials over an infinite field do not evaluate
to zero everywhere, but P(B) = 0 for all B by (V.A.17), we must
have P = 0. Hence Q(X)Q(adjX) = (det X)q in F[{xij}] and so
Q(X) | (det X)q. But F[{xij}] is a UFD, and so the result is clear
if we know that det X is irreducible in F[{xij}]. This is proved in
[Jacobson]. �

Exterior algebras are ubiquitous in algebra (esp. representation
theory) and geometry (differential forms).


