V. Remarks on Associative Algebras

V.A. Algebras over a field

Let FF be a field. What would you call an F-vector space where
you can multiply vectors?

V.A.1. DEFINITION. An [F-algebra (or algebra over ) is a ring
A, together with a scalar multiplication by IF which makes A into an
F-vector space and satisfies

(V.A2) fr(maz) = (f-a1)az = a1 (f - a2).

V.A.3. EQUIVALENT DEFINITION. A ring A together with an em-
bedding ¢: F — C(A).

PROOF THAT V.A.1 IMPLIES V.A.3. Let A be an F-algebra, and
(foreach f € F)sete(f) := f-14 € A. Then:

e ¢isa homomorphism (from IF to A): since A is a vector space over
F,wehave (fi+ f2)-a=fi-a+ fr-aand (fif2) -a= f1-(f2-a),
and setting a = 14 (and using (V.A.2)) does the job;

e ¢isinjective because F is a field; and

o e(f) € C(A) because ag(f) = a(f - 14) = f - (ala) = f - (140) =
(f-1a)a = e(f)a.

[The other direction is left to you.] 0

We will now stop writing the “-”. Also, notice that e embeds IF as
a subring of A whose elements commute with everything; so we can

‘“” 7

identify IF with this subring, and drop “¢”.

V.A.4. EXAMPLES. (i) Field extensions [E/F: these are, by defini-
tion, fields containing IF.
(i) Polynomial algebras Fxy, ..., x,].
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(iii) Product algebras IF x - - - x IF.

(iv) Matrix algebras M, (FF) (= the ring of endomorphisms of an n-
dimensional [F-vector space).

(v) Group algebra F[G] (of a finite group G).

(vi) Ring of endomorphisms of an F[A]-module.

(vii) Quaternion algebras (e.g., H as an IR-algebra; or the rational
quaternion algebras from HW 6 #6).

(viii) Exterior algebras (defined below).

V.A.5. DEFINITION. A" C A is an F-subalgebra if A’ is a sub-
F-vector space and subring. The [F-subalgebra generated by a set
SCAis

F[S] = m A = {elements of A that can be written} ‘

as polynomials over Fin {1} U S
A’ C Asubalg. POy v ' { }

A'DS
(So there is an obvious notion of finitely generated [F-algebra; this is
much weaker than finite-dimensionality of A as vector space over [F.)

V.A.6. DEFINITION. Officially, I C A is an (algebra) ideal if I is
an ideal in the ring A which is an F-vector subspace. But in point of
fact, since F C A, any ring-ideal of A is already closed under multi-
plication by IF, hence also an algebra-ideal; so there’s no difference.

Given an ideal I C A, the quotient A/I has an [F-algebra struc-
ture: the composition IF <— A — A/ is still injective by (IIL.E.1).

V.A.7. DEFINITION. A map a: A — B of F-algebras is an FF-
algebra homomorphism if it is a ring homomorphism which is IF-
linear (i.e., a(fa) = fa(a) forall f € Fanda € A).

As usual, we get a “Fundamental Theorem” to the effect that I :=
ker(w) is an (algebra) ideal and there exists & such that

AU\& "‘%B

A/l
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commutes.
There is also an algebro-theoretic version of Cayley’s theorem:

V.A.8. THEOREM. Any [F-algebra A is isomorphic to a subalgebra of
an algebra of endomorphisms of a vector space.

PROOF. Consider A as an [F-vector space, and map

¢: A — Endp(A)

a+— £, := left-multiplication by a.
Since A is an algebra,

la(fa) = a(fa) = flaw) = fla(a)

—> {, € Endp(A). Moreover, we know that ¢ is an injective ring
homomorphism.! Finally, £ is a homomorphism of F-vector spaces,
since by (V.A.2) we have {f,(a) = (fa)(a) = f(an) = fly(a) and
thus £, = fl,. O

Exterior algebras. For this extended example, start with a vector
space V /IF of dimension n (without a multiplication law, of course).
We would like an algebra A generated by V such that

(V.A.9) =0 (VveV).
Let {uy,...,uy} C V be abasis. Then (V.A.9) gives

_ 2 2 2
O—(u,-—l-u]-) —u; —u]- —uiuj—i—ujui —

(V.A.lO) uiu]- = —ujui.
If we take iy < --- < iy, then this yields

(V.A.11) Wiy " Uiy = sgn(o)u;, ---u;, (Vo € &)

since sgn (o) = (—1)#oftranspositionsin & 31q & can be built from adja-
cent transpositions (as in (V.A.10)). Henceforth, we shall write “A”
for our product and make the formal

'Why? Recall £, =0 — 0=/(,1=a-1=a.
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V.A.12. DEFINITION. Ag V is the F-algebra with
e (IF-vector space) basis consisting of monomials*
ug = uj N N (i1<"'<ik)

where Z = {iy, ..., i} ranges over subsets of {1,...,n},
e product

0, fINJT £

A =
nr Aty {Sgl‘l(O’IJ)MIUj, if ZN J =0

where o7 7 shuffles 7 and J together, and
e identity up = 1.

We have dimg(Agp V) = X1 (}) = (1+1)" =2",and
(V.A.13) ARV = @k ARV,

where AL V is the subspace spanned by monomials of degree k.

V.A.14. EXAMPLE. We illustrate the product: taking 7 = {1,3,6}
and J = {2,5}, we “shuffle” them together by jumping 2 over 3 and
6, then 5 over 6, for a total of three transpositions. Hence

(ug ANug ANug) A (up A us) = (—1)3u1 Nup ANuz Nus ANug = —Uzy7-
~—— ——
ur Llj

V.A.15. PROPOSITION. Let B = (b;;) € My(IF). Then
(byiur + -+ -+ b)) A A (g + - - 4+ byptty) = (det(B)) ug A+ - Aty
PROOF. Expanding the LHS gives
Yoin,in (Dip 1 i) Uiy Ao Ay

Since v Av = 0, terms with i; = i; for j # k vanish, and this becomes

ZUGGn(bU(l),l T ba(n),n)ua(l) ARERRA Ug(n)
= (Lo ([Tibogy,)sgn(e) ) A=+ A,
where the parenthetical quantity is just det(B). O

’The degree of the monomial is k = |Z|.
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V.A.16. THEOREM. Assume |F| = oo, let Q € F[x11,X12, - - -, Xnn] =:
F[{x;;}] be a homogeneous polynomial of degree q in n* variables, and de-
fine Q(B) := Q({bjj}) for matrices B € M, (FF). Assume that Q(1,) =1

and Q(BB") = Q(B)Q(B'). Then Q is a power of det.

SKETCH. Since Q is homogeneous,
(V.A17)

Q(B)Q(adjB) = Q((det B)1,) = (det B)7Q(L,) = (det B)".

Writing X = (x;;), set P(X) := Q(X)Q(adjX) — (det X)1 € F[{x;;}].
Since nontrivial polynomials over an infinite field do not evaluate
to zero everywhere, but P(B) = 0 for all B by (V.A.17), we must
have P = 0. Hence Q(X)Q(adjX) = (detX) in F[{x;;}] and so
Q(X) | (detX). But F[{x;}] is a UFD, and so the result is clear
if we know that det X is irreducible in F[{x;;}]. This is proved in
[Jacobson]. O

Exterior algebras are ubiquitous in algebra (esp. representation
theory) and geometry (differential forms).



