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V.B. Finite-dimensional division algebras

What about a vector space where you can multiply and divide vec-
tors?

V.B.1. DEFINITION. A division algebra over a field F is an F-
algebra A whose underlying ring is a division ring.

This rules out most of the examples in V.A.4; for example, prod-
ucts like F×F contain zero-divisors, as do matrix algebras.

V.B.2. EXAMPLES. (i) Field extensions are division algebras: e.g.,
C is an R-division algebra; and Q[ζ5] is a Q-division algebra.
(ii) Quaternion algebras give some non-commutative examples: H

(Hamilton’s quaternions) is an R-division algebra; while the non-
split (i.e., division ring) cases in HW 6 #6 give Q-division algebras.

We are particularly interested in division algebras which are finite-
dimensional (as F-vector spaces). While number fields (viewed as
field extensions) easily yield an endless list of such examples over
Q, you may find it difficult to recall seeing any finite-dimensional
field extensions of C. That is because they don’t exist!

V.B.3. DEFINITION. (i) An algebraic field extension3 of F is one
whose every element is algebraic (cf. III.G.6(ii)) over F.

(ii) Call a field F algebraically closed if it has no algebraic field
extensions (other than itself).

V.B.4. EXAMPLE. The Fundamental Theorem of Algebra states
that every polynomial over C has a root (hence all roots) in C. (This
theorem is proved in complex analysis.) Since any element α of a
field extension which is algebraic over C satisfies a polynomial equa-
tion P(α) = 0, α actually belongs to C. So C is algebraically closed.

Clearly division algebras are the simplest kind of F-algebra after
field extensions; so we shall do a rough classification for F = R, C,
and finite fields. To begin with, we finish off C with the

3Warning: these need not be finite-dimensional (though they certainly are if they
are finitely generated).
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V.B.5. THEOREM. Let F be an algebraically closed field, and A a finite-
dimensional division algebra over F. Then A = F.

PROOF. Let a ∈ A, and consider the ring homomorphism

eva : F[λ]� F[a] ⊂ A

f (λ) 7→ f (a).

This cannot be injective, since A (hence F[a]) is finite-dimensional
and F[λ] is not. So we have F[a] ∼= F[λ]/(ma), where ma is the
minimal polynomial of a over F. Were this reducible, F[a] wouldn’t
be a domain, which is impossible since A is a division algebra.

Hence ma is irreducible, and F[a] is a field, all of whose elements
are algebraic over F (cf. III.G.8). Since F is algebraically closed,
F[a] = F. So, in particular, a ∈ F; and since a ∈ A was arbitrary,
A = F. �

Given p(λ) ∈ R[λ] monic, we have

p(λ) = ∏n
j=1(λ− αj) = ∏n

j=1(λ− ᾱj)

in C[λ], by the Fundamental Theorem of Algebra. We can rewrite
this as

p(λ) = ∏r
i=1(λ− ai)×∏s

k=1(λ− βk)(λ− β̄k)

= ∏r
i=1(λ− ai)×∏s

k=1(λ
2 − 2<(βk) + |βk|2),

with ai ∈ R and βk /∈ R. Hence no polynomial of degree > 2 is
irreducible in R[λ].

Let A be a finite-dimensional division algebra over R. Given α ∈
A\R, we consider as usual

evα : R[λ]� R[α] ⊂ A,

which as above has a nontrivial kernel K since dimF(A) < ∞. Since
R[λ] is a PID, K = (mα) with mα irreducible (also as above); and as
α /∈ R, deg(mα) > 1. So deg(mα) = 2, and mα(λ) = λ2 − 2aλ + b,
with a2 < b. We may thus write α = β + a, where β ∈ A\R and
β2 = a2 − b < 0.
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Now consider the subset

A′ := {α ∈ A | α2 ∈ R≤0} ⊂ (A\R) ∪ {0}.

From the last paragraph it is clear that if A\R 6= ∅, then A′ 6= {0}
(and the converse is obvious).

V.B.6. LEMMA. A′ is an R-subspace of A.

PROOF. Given r ∈ R, α ∈ A′, we have (αr)2 = α2r2 ≤ 0 =⇒
αr ∈ A′. So A′ is closed under multiplication and we only need to
check sums of elements. So let u, v ∈ A′\{0} be linearly independent
over R in A. (If they are dependent, u + v is a multiple of u and we
are done.) By assumption, we have u2, v2 ∈ R<0.

Suppose first that u = av + b, with a, b ∈ R. Then in

u2 = (av + b)2 = a2v2 + 2abv + b2,

the RHS terms are real except for 2abv, which forces ab = 0. But we
can’t have a = 0, for then u = b ∈ R; and if b = 0, then u = av
contradicts the independence.

So u is not of the form av + b, which means that u, v, and 1 are
independent over R. Hence u + v, u − v ∈ A\R; and so as above
(for α), they satisfy irreducible quadratic equations

0 = (u + v)2 − p(u + v)− q and 0 = (u− v)2 − r(u− v)− s.

Writing c = u2, d = v2, these become

0 = c + d + (uv + vu)− p(u + v)− q

and 0 = c + d− (uv + vu)− r(u− v)− s,

and adding gives

0 = (p + r)u + (p− r)v + (q + s− 2c− 2d)1.

By independence of {u, v, 1} it now follows that p = r = 0. So for the
original equations to have been irreducible, we must have q, s < 0 ;
in particular, (u + v)2 = q ∈ R<0. Hence u + v ∈ A′ as desired. �
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For u ∈ A′, set
Q(u) := −u2 ∈ R.

V.B.7. LEMMA. Q is a positive-definite quadratic form on A′.

PROOF. Since A is a domain, Q(u) = 0 ⇐⇒ u = 0. Moreover,
for a ∈ R, Q(au) = a2Q(u), so Q is quadratic. Finally, Q(u) ≥ 0 for
all u ∈ A′ (by definition of A′). �

Write

B(u, v) := Q(u + v)−Q(u)−Q(v) = −(uv + vu)

for the associated positive-definite symmetric bilinear form. Now
suppose A′ 6= {0}, i.e. A ) R, and pick i ∈ A′ such that Q(i) = 1;
we can do this by rescaling any element in A′\{0} by a real number.
Then i2 = −1, and we fix the copy of C = R + iR = R[i] ⊂ A.

Next, suppose that A ) C; then A′ ) iR, and we pick ̂ ∈ A′\iR

and take j̃ := ĵ− iB(i, ĵ). This gives B(j̃, i) = B(ĵ, i)− B(i, ĵ)
��

��*
1

B(i, i) =
0, and rescaling j̃ gives j with j2 = −1 and j ⊥ i (i.e. 0 = B(i, j) =

ij + ji). Setting k = ij, we compute
k2 = ijij = −iijj = −(−1)(−1) = −1
ik = i2j = −j = jii = −iji = −ki
jk = · · · = −kj

=⇒


k ∈ A′, k ⊥ i, j
1, i, j, k R-linearly independent
R + iR + jR + kR = H ⊂ A.

Finally, suppose A ) H. Then there exists ` ∈ A′ with Q(`) = 1
and ` ⊥ i, j, k. As above, this gives `i = −i`, `j = −j`, and `k =

−k`; substituting k = ij in the last of these gives

−(ij)` = `(ij) = (`i)j = −(i`)j = −i(`j) = i(j`) = (ij)`,

a contradiction. This proves the famous

V.B.8. THEOREM (Frobenius, 1877). Let A be a finite-dimensional
division algebra over R. Then A = R, C, or H.
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V.B.9. REMARK. If one allows A to be nonassociative, then there
is one more (8-dimensional) option, Cayley’s octonions O = H×H

with the multiplication law

(q, r) · (s, t) = (qs− r∗t, q∗t + rs)

where “∗” denotes “quaternionic conjugation” (i 7→ −i, j 7→ −j,
k 7→ −k). More or less, this mimics the way you get H from C×C

and C from R×R. The octonions play a starring role in the explicit
construction of the exceptional Lie groups G2, F4, E6, E7, E8 in Cartan’s
classsification of simple Lie groups over C.

V.B.10. REMARK. There are lots of non-isomorphic 4-dimensional
“quaternion algebras” over Q, and there are lots of algebraic field
extensions. But one might have held out hope that, say, there is an
upper bound on the dimension of non-commutative Q-division al-
gebras. Alas, this is not the case: for instance, if γ is an even integer
not divisible by 8, the Q-algebra generated by x, y subject to the rela-
tions

x3 + x2 − 2x− 1 = 0, xy = y(x2 − 2), y3 = γ

is a division algebra of dimension 9. A classification of such exam-
ples was carried out by Dickson.

Finally, we consider the case of a division algebra A over a finite
field F (i.e. |F| < ∞), with n := dimF A < ∞. Clearly |A| = |F|n,
and so (forgetting the F-action) A is a finite division ring. Con-
versely, if A a finite division ring, then C(A) is a finite field and A is
an algebra over it (cf. V.A.3), necessarily finite-dimensional.

V.B.11. THEOREM (Wedderburn, 1905). Any finite division ring is
commutative, hence a field.

V.B.12. REMARK. The theorem means that algebraic field exten-
sions furnish the only examples of finite-dimensional F-division al-
gebras when |F| < ∞.
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PROOF OF V.B.11. Set F = C(A), q = |F|, n = dimF A. We need
to show that n = 1, since this is equivalent to A = F.4

Applying the class equation to the group A∗ = A\{0} gives

(V.B.13) |A∗| = ∑i|ccl(xi)| = ∑i[A∗ : stab(xi)]

where xi is a set of representatives for the conjugacy classes in A∗.
In particular, there are q− 1 one-element conjugacy classes, given by
the elements x1, . . . , xq−1 of F∗; each has stabilizer equal to all of A∗.
Each xi ∈ A∗\F∗, on the other hand, is stabilized by the nonzero
elements of a proper subring Ai ⊂ A containing F. (Why?) These Ai

are F-algebras, and so |Ai| = qmi with 1 ≤ mi < n, and |stab(xi)| =
qmi − 1. Thus (V.B.13) becomes

(V.B.14) qn − 1 = |A| − 1 = |A∗| = (q− 1) + ∑i≥q
qn−1
qmi−1 .

Now regard, for each i, A as a module over Ai. Clearly, it is free
(A has no zero-divisors), of some finite rank di. Moreover, Ai is a
mi-dimensional vector space over F. So as F-vector spaces,

Fn = A = Ai ⊕ · · · ⊕ Ai︸ ︷︷ ︸
di

= Fmi ⊕ · · · ⊕ Fmi︸ ︷︷ ︸
di

=⇒ n = midi =⇒ mi | n (∀i).
Finally, define the dth cyclotomic polynomial

fd(λ) := ∏
1 ≤ j ≤ d− 1

(d, j) = 1

(λ− ζ
j
d),

with f1(λ) = 1 by convention; then we have

λn − 1 = ∏
1 ≤ d ≤ n

d | n

fd(λ),

4I have changed font for the field, because we want to think of A = F as a field
extension of some original field F.
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and similarly for λmi − 1. So

mi | n (∀i ≥ q) =⇒ λn − 1
λmi − 1

∈ ( fn(λ)) ⊂ Z[λ] (∀i ≥ q)

=⇒ qn − 1,
qn − 1
qmi − 1

∈ ( fn(q)) ⊂ Z (∀i ≥ q)

=⇒
(V.B.15)

fn(q) | q− 1

=⇒ | fn(q)|
∣∣q− 1.

But
| fn(q)| = ∏

(j,n)=1
|q− ζ

j
n| > q− 1,

and we have a contradiction, unless n = 1. �

V.B.15. COROLLARY. Any finite domain R is a field.

PROOF. For any r ∈ R, left-multiplication `r gives a map R →
R. This map is injective since there R has no zero-divisors. By the
pigeonhole principle, it is therefore surjective, and there exists r′ ∈ R
with rr′ = 1R. So R \ {0} = R∗ and R is a division ring, and we are
done by V.B.11. �


