V.B. Finite-dimensional division algebras

What about a vector space where you can multiply and divide vectors?
V.B.1. Definition. A division algebra over a field \mathbb{F} is an \mathbb{F} algebra A whose underlying ring is a division ring.

This rules out most of the examples in V.A.4; for example, products like $\mathbb{F} \times \mathbb{F}$ contain zero-divisors, as do matrix algebras.
V.B.2. ExAMPLES. (i) Field extensions are division algebras: e.g., \mathbb{C} is an \mathbb{R}-division algebra; and $\mathbb{Q}\left[\zeta_{5}\right]$ is a \mathbb{Q}-division algebra.
(ii) Quaternion algebras give some non-commutative examples: \mathbb{H} (Hamilton's quaternions) is an \mathbb{R}-division algebra; while the nonsplit (i.e., division ring) cases in HW 6 \#6 give Q-division algebras.

We are particularly interested in division algebras which are finitedimensional (as \mathbb{F}-vector spaces). While number fields (viewed as field extensions) easily yield an endless list of such examples over Q, you may find it difficult to recall seeing any finite-dimensional field extensions of \mathbb{C}. That is because they don't exist!
V.B.3. DEFINITION. (i) An algebraic field extension ${ }^{3}$ of \mathbb{F} is one whose every element is algebraic (cf. III.G.6(ii)) over \mathbb{F}.
(ii) Call a field \mathbb{F} algebraically closed if it has no algebraic field extensions (other than itself).
V.B.4. Example. The Fundamental Theorem of Algebra states that every polynomial over \mathbb{C} has a root (hence all roots) in \mathbb{C}. (This theorem is proved in complex analysis.) Since any element α of a field extension which is algebraic over \mathbb{C} satisfies a polynomial equation $P(\alpha)=0, \alpha$ actually belongs to \mathbb{C}. So \mathbb{C} is algebraically closed.

Clearly division algebras are the simplest kind of \mathbb{F}-algebra after field extensions; so we shall do a rough classification for $\mathbb{F}=\mathbb{R}, \mathbb{C}$, and finite fields. To begin with, we finish off \mathbb{C} with the

[^0]V.B.5. Theorem. Let \mathbb{F} be an algebraically closed field, and A a finitedimensional division algebra over \mathbb{F}. Then $A=\mathbb{F}$.

Proof. Let $a \in A$, and consider the ring homomorphism

$$
\begin{aligned}
\mathrm{ev}_{a}: & \mathbb{F}[\lambda] \\
& \rightarrow \mathbb{F}[a] \subset A \\
f(\lambda) & \mapsto f(a) .
\end{aligned}
$$

This cannot be injective, since A (hence $\mathbb{F}[a]$) is finite-dimensional and $\mathbb{F}[\lambda]$ is not. So we have $\mathbb{F}[a] \cong \mathbb{F}[\lambda] /\left(m_{a}\right)$, where m_{a} is the minimal polynomial of a over \mathbb{F}. Were this reducible, $\mathbb{F}[a]$ wouldn't be a domain, which is impossible since A is a division algebra.

Hence m_{a} is irreducible, and $\mathbb{F}[a]$ is a field, all of whose elements are algebraic over \mathbb{F} (cf. III.G.8). Since \mathbb{F} is algebraically closed, $\mathbb{F}[a]=\mathbb{F}$. So, in particular, $a \in \mathbb{F}$; and since $a \in A$ was arbitrary, $A=\mathbb{F}$.

Given $p(\lambda) \in \mathbb{R}[\lambda]$ monic, we have

$$
p(\lambda)=\prod_{j=1}^{n}\left(\lambda-\alpha_{j}\right)=\prod_{j=1}^{n}\left(\lambda-\bar{\alpha}_{j}\right)
$$

in $\mathbb{C}[\lambda]$, by the Fundamental Theorem of Algebra. We can rewrite this as

$$
\begin{aligned}
p(\lambda) & =\prod_{i=1}^{r}\left(\lambda-a_{i}\right) \times \prod_{k=1}^{s}\left(\lambda-\beta_{k}\right)\left(\lambda-\bar{\beta}_{k}\right) \\
& =\prod_{i=1}^{r}\left(\lambda-a_{i}\right) \times \prod_{k=1}^{s}\left(\lambda^{2}-2 \Re\left(\beta_{k}\right)+\left|\beta_{k}\right|^{2}\right)
\end{aligned}
$$

with $a_{i} \in \mathbb{R}$ and $\beta_{k} \notin \mathbb{R}$. Hence no polynomial of degree >2 is irreducible in $\mathbb{R}[\lambda]$.

Let A be a finite-dimensional division algebra over \mathbb{R}. Given $\alpha \in$ $A \backslash \mathbb{R}$, we consider as usual

$$
\mathrm{ev}_{\alpha}: \mathbb{R}[\lambda] \rightarrow \mathbb{R}[\alpha] \subset A,
$$

which as above has a nontrivial kernel K since $\operatorname{dim}_{\mathbb{F}}(A)<\infty$. Since $\mathbb{R}[\lambda]$ is a PID, $K=\left(m_{\alpha}\right)$ with m_{α} irreducible (also as above); and as $\alpha \notin \mathbb{R}, \operatorname{deg}\left(m_{\alpha}\right)>1$. So $\operatorname{deg}\left(m_{\alpha}\right)=2$, and $m_{\alpha}(\lambda)=\lambda^{2}-2 a \lambda+b$, with $a^{2}<b$. We may thus write $\alpha=\beta+a$, where $\beta \in A \backslash \mathbb{R}$ and $\beta^{2}=a^{2}-b<0$.

Now consider the subset

$$
A^{\prime}:=\left\{\alpha \in A \mid \alpha^{2} \in \mathbb{R}_{\leq 0}\right\} \subset(A \backslash \mathbb{R}) \cup\{0\}
$$

From the last paragraph it is clear that if $A \backslash \mathbb{R} \neq \varnothing$, then $A^{\prime} \neq\{0\}$ (and the converse is obvious).
V.B.6. Lemma. A^{\prime} is an \mathbb{R}-subspace of A.

PROOF. Given $r \in \mathbb{R}, \alpha \in A^{\prime}$, we have $(\alpha r)^{2}=\alpha^{2} r^{2} \leq 0 \Longrightarrow$ $\alpha r \in A^{\prime}$. So A^{\prime} is closed under multiplication and we only need to check sums of elements. So let $u, v \in A^{\prime} \backslash\{0\}$ be linearly independent over \mathbb{R} in A. (If they are dependent, $u+v$ is a multiple of u and we are done.) By assumption, we have $u^{2}, v^{2} \in \mathbb{R}_{<0}$.

Suppose first that $u=a v+b$, with $a, b \in \mathbb{R}$. Then in

$$
u^{2}=(a v+b)^{2}=a^{2} v^{2}+2 a b v+b^{2}
$$

the RHS terms are real except for $2 a b v$, which forces $a b=0$. But we can't have $a=0$, for then $u=b \in \mathbb{R}$; and if $b=0$, then $u=a v$ contradicts the independence.

So u is not of the form $a v+b$, which means that u, v, and 1 are independent over \mathbb{R}. Hence $u+v, u-v \in A \backslash \mathbb{R}$; and so as above (for α), they satisfy irreducible quadratic equations

$$
0=(u+v)^{2}-p(u+v)-q \text { and } 0=(u-v)^{2}-r(u-v)-s
$$

Writing $c=u^{2}, d=v^{2}$, these become

$$
\begin{aligned}
& 0=c+d+(u v+v u)-p(u+v)-q \\
& \quad \text { and } 0=c+d-(u v+v u)-r(u-v)-s,
\end{aligned}
$$

and adding gives

$$
0=(p+r) u+(p-r) v+(q+s-2 c-2 d) 1
$$

By independence of $\{u, v, 1\}$ it now follows that $p=r=0$. So for the original equations to have been irreducible, we must have $q, s<0$; in particular, $(u+v)^{2}=q \in \mathbb{R}_{<0}$. Hence $u+v \in A^{\prime}$ as desired.

For $u \in A^{\prime}$, set

$$
Q(u):=-u^{2} \in \mathbb{R} .
$$

V.B.7. LEMMA. Q is a positive-definite quadratic form on A^{\prime}.

Proof. Since A is a domain, $Q(u)=0 \Longleftrightarrow u=0$. Moreover, for $a \in \mathbb{R}, Q(a u)=a^{2} Q(u)$, so Q is quadratic. Finally, $Q(u) \geq 0$ for all $u \in A^{\prime}$ (by definition of A^{\prime}).

Write

$$
B(u, v):=Q(u+v)-Q(u)-Q(v)=-(u v+v u)
$$

for the associated positive-definite symmetric bilinear form. Now suppose $A^{\prime} \neq\{0\}$, i.e. $A \supsetneq \mathbb{R}$, and pick $\mathbf{i} \in A^{\prime}$ such that $Q(\mathbf{i})=1$; we can do this by rescaling any element in $A^{\prime} \backslash\{0\}$ by a real number. Then $\mathbf{i}^{2}=-1$, and we fix the copy of $\mathbb{C}=\mathbb{R}+\mathbf{i} \mathbb{R}=\mathbb{R}[\mathbf{i}] \subset A$.

Next, suppose that $A \supsetneq \mathbb{C}$; then $A^{\prime} \supsetneq \mathbf{i} \mathbb{R}$, and we pick $\hat{\jmath} \in A^{\prime} \backslash \mathbf{i} \mathbb{R}$ and take $\tilde{\mathbf{j}}:=\hat{\mathbf{j}}-\mathbf{i} B(\mathbf{i}, \hat{\mathbf{j}})$. This gives $B(\tilde{\mathbf{j}}, \mathbf{i})=B(\hat{\mathbf{j}}, \mathbf{i})-B(\mathbf{i}, \hat{\mathbf{j}}) B(\mathbf{i}, \mathbf{i}){ }^{1}=$ 0 , and rescaling $\tilde{\mathbf{j}}$ gives \mathbf{j} with $\mathbf{j}^{2}=-1$ and $\mathbf{j} \perp \mathbf{i}$ (i.e. $0=B(\mathbf{i}, \mathbf{j})=$ $\mathbf{i j}+\mathbf{j i}$. Setting $\mathbf{k}=\mathbf{i j}$, we compute

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathbf{k}^{2}=\mathbf{i} \mathbf{i} \mathbf{i}=-\mathbf{i} \mathbf{i} \mathbf{j}=-(-1)(-1)=-1 \\
\mathbf{i} \mathbf{k}=\mathbf{i}^{2} \mathbf{j}=-\mathbf{j}=\mathbf{j i i}=-\mathbf{i} \mathbf{j}=-\mathbf{k i} \\
\mathbf{j} \mathbf{k}=\cdots=-\mathbf{k j}
\end{array}\right. \\
& \Longrightarrow\left\{\begin{array}{l}
\mathbf{k} \in A^{\prime}, \mathbf{k} \perp \mathbf{i}, \mathbf{j} \\
1, \mathbf{i}, \mathbf{j}, \mathbf{k} \quad \mathbb{R}-\mathrm{linearly} \text { independent } \\
\mathbb{R}+\mathbf{i} \mathbb{R}+\mathbf{j} \mathbb{R}+\mathbf{k} \mathbb{R}=\mathbb{H} \subset A .
\end{array}\right.
\end{aligned}
$$

Finally, suppose $A \supsetneq \mathbb{H}$. Then there exists $\ell \in A^{\prime}$ with $Q(\ell)=1$ and $\ell \perp \mathbf{i}, \mathbf{j}, \mathbf{k}$. As above, this gives $\ell \mathbf{i}=-\mathbf{i} \ell, \ell \mathbf{j}=-\mathbf{j} \ell$, and $\ell \mathbf{k}=$ $-\mathbf{k} \ell$; substituting $\mathbf{k}=\mathbf{i j}$ in the last of these gives

$$
-(\mathbf{i} \mathbf{j}) \ell=\ell(\mathbf{i} \mathbf{j})=(\ell \mathbf{i}) \mathbf{j}=-(\mathbf{i} \ell) \mathbf{j}=-\mathbf{i}(\ell \mathbf{j})=\mathbf{i}(\mathbf{j} \ell)=(\mathbf{i} \mathbf{j}) \ell,
$$

a contradiction. This proves the famous
V.B.8. THEOREM (Frobenius, 1877). Let A be a finite-dimensional division algebra over \mathbb{R}. Then $A=\mathbb{R}, \mathbb{C}$, or \mathbb{H}.
V.B.9. REMARK. If one allows A to be nonassociative, then there is one more (8-dimensional) option, Cayley's octonions $\mathrm{O}=\mathbb{H} \times \mathbb{H}$ with the multiplication law

$$
(q, r) \cdot(s, t)=\left(q s-r^{*} t, q^{*} t+r s\right)
$$

where " $*$ " denotes "quaternionic conjugation" $(\mathbf{i} \mapsto-\mathbf{i}, \mathbf{j} \mapsto-\mathbf{j}$, $\mathbf{k} \mapsto-\mathbf{k}$). More or less, this mimics the way you get \mathbb{H} from $\mathbb{C} \times \mathbb{C}$ and \mathbb{C} from $\mathbb{R} \times \mathbb{R}$. The octonions play a starring role in the explicit construction of the exceptional Lie groups $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$ in Cartan's classsification of simple Lie groups over \mathbb{C}.
V.B.10. REMARK. There are lots of non-isomorphic 4-dimensional "quaternion algebras" over \mathbb{Q}, and there are lots of algebraic field extensions. But one might have held out hope that, say, there is an upper bound on the dimension of non-commutative Q-division algebras. Alas, this is not the case: for instance, if γ is an even integer not divisible by 8 , the \mathbb{Q}-algebra generated by x, y subject to the relations

$$
x^{3}+x^{2}-2 x-1=0, \quad x y=y\left(x^{2}-2\right), \quad y^{3}=\gamma
$$

is a division algebra of dimension 9. A classification of such examples was carried out by Dickson.

Finally, we consider the case of a division algebra A over a finite field $\mathbb{F}($ i.e. $|\mathbb{F}|<\infty)$, with $n:=\operatorname{dim}_{\mathbb{F}} A<\infty$. Clearly $|A|=|\mathbb{F}|^{n}$, and so (forgetting the \mathbb{F}-action) A is a finite division ring. Conversely, if A a finite division ring, then $C(A)$ is a finite field and A is an algebra over it (cf. V.A.3), necessarily finite-dimensional.
V.B.11. THEOREM (Wedderburn, 1905). Any finite division ring is commutative, hence a field.
V.B.12. Remark. The theorem means that algebraic field extensions furnish the only examples of finite-dimensional \mathbb{F}-division algebras when $|\mathbb{F}|<\infty$.

Proof of V.B.11. Set $F=C(A), q=|F|, n=\operatorname{dim}_{F} A$. We need to show that $n=1$, since this is equivalent to $A=F .{ }^{4}$

Applying the class equation to the group $A^{*}=A \backslash\{0\}$ gives

$$
\begin{equation*}
\left|A^{*}\right|=\sum_{i}\left|\operatorname{ccl}\left(x_{i}\right)\right|=\sum_{i}\left[A^{*}: \operatorname{stab}\left(x_{i}\right)\right] \tag{V.B.13}
\end{equation*}
$$

where x_{i} is a set of representatives for the conjugacy classes in A^{*}. In particular, there are $q-1$ one-element conjugacy classes, given by the elements x_{1}, \ldots, x_{q-1} of F^{*}; each has stabilizer equal to all of A^{*}. Each $x_{i} \in A^{*} \backslash F^{*}$, on the other hand, is stabilized by the nonzero elements of a proper subring $A_{i} \subset A$ containing F. (Why?) These A_{i} are F-algebras, and so $\left|A_{i}\right|=q^{m_{i}}$ with $1 \leq m_{i}<n$, and $\left|\operatorname{stab}\left(x_{i}\right)\right|=$ $q^{m_{i}}-1$. Thus (V.B.13) becomes

$$
\begin{equation*}
q^{n}-1=|A|-1=\left|A^{*}\right|=(q-1)+\sum_{i \geq q} \frac{q^{n}-1}{q^{m_{i}}-1} . \tag{V.B.14}
\end{equation*}
$$

Now regard, for each i, A as a module over A_{i}. Clearly, it is free (A has no zero-divisors), of some finite rank d_{i}. Moreover, A_{i} is a m_{i}-dimensional vector space over F. So as F-vector spaces,

$$
F^{n}=A=\underbrace{A_{i} \oplus \cdots \oplus A_{i}}_{d_{i}}=\underbrace{F^{m_{i}} \oplus \cdots \oplus F^{m_{i}}}_{d_{i}}
$$

$\Longrightarrow n=m_{i} d_{i} \Longrightarrow m_{i} \mid n(\forall i)$.
Finally, define the $d^{\text {th }}$ cyclotomic polynomial

$$
f_{d}(\lambda):=\prod_{\substack{1 \leq j \leq d-1 \\(d, j)=1}}\left(\lambda-\zeta_{d}^{j}\right)
$$

with $f_{1}(\lambda)=1$ by convention; then we have

$$
\lambda^{n}-1=\prod_{\substack{1 \leq d \leq n \\ d \mid n}} f_{d}(\lambda)
$$

[^1]and similarly for $\lambda^{m_{i}}-1$. So
\[

$$
\begin{aligned}
m_{i} \mid n(\forall i \geq q) & \Longrightarrow \frac{\lambda^{n}-1}{\lambda^{m_{i}}-1} \in\left(f_{n}(\lambda)\right) \subset \mathbb{Z}[\lambda](\forall i \geq q) \\
& \Longrightarrow q^{n}-1, \frac{q^{n}-1}{q^{m_{i}}-1} \in\left(f_{n}(q)\right) \subset \mathbb{Z}(\forall i \geq q) \\
& \left(\underset{\text { V.B.15 })}{ } f_{n}(q) \mid q-1\right. \\
& \Longrightarrow\left|f_{n}(q)\right| \mid q-1
\end{aligned}
$$
\]

But

$$
\left|f_{n}(q)\right|=\prod_{(j, n)=1}\left|q-\zeta_{n}^{j}\right|>q-1
$$

and we have a contradiction, unless $n=1$.
V.B.15. Corollary. Any finite domain R is a field.

Proof. For any $r \in R$, left-multiplication ℓ_{r} gives a map $R \rightarrow$ R. This map is injective since there R has no zero-divisors. By the pigeonhole principle, it is therefore surjective, and there exists $r^{\prime} \in R$ with $r r^{\prime}=1_{R}$. So $R \backslash\{0\}=R^{*}$ and R is a division ring, and we are done by V.B.11.

[^0]: ${ }^{3}$ Warning: these need not be finite-dimensional (though they certainly are if they are finitely generated).

[^1]: ${ }^{4}$ I have changed font for the field, because we want to think of $A=F$ as a field extension of some original field \mathbb{F}.

