PROBLEM SET 1

Hand in problems 5-10. Make sure you can do 3 and 4; 1 and 2 should be regarded as optional but enlightening.

- (1) Show that if p is a prime and $p \mid ab$ then either $p \mid a$ or $p \mid b$.
- (2) Prove that Zorn's lemma implies the axiom of choice.
- (3) Check that Example (I.A.2)(iv) in the notes is transitive (hence an equivalence relation), and prove that the quotient set is isomorphic (as a set i.e. there exists a bijective mapping) to \mathbb{Z} .
- (4) Let X be a set. Prove that the set of partitions of X is isomorphic to the set of equivalence relations on X.
- (5) Referring to Example (II.C.3)(ii) in the notes, write down (with some sort of proof) the relations for the dihedral group D_n . [Hint: look at Jacobson p. 36 #8.] Write down the multiplication tables for D_3 and \mathfrak{S}_3 (symmetric group).
- (6) Let $X := \{1, \alpha, \beta\}$ (3-element set). There are 3^4 ways to define a binary operation on X which satisfies (II.A.1)(ii) (best visualized in table form). How many give a monoid and how many give a group? In each case, are there any nonabelian examples?
- (7) Find a group structure on the set of integer solutions to $x^2 5y^2 = \pm 4$ which makes it into an abelian group isomorphic to $\mathbb{Z} \times \{1, -1\}$. [Hint: consider numbers of the form $\frac{x+y\sqrt{5}}{2}$.] What do you notice about the y-values in this set?
- (8) Write (456)(567)(671)(123)(234)(345) as a product of disjoint cycles; also determine its sign.
- (9) Show that any finite group of even order contains an element $a \neq 1$ such that $a^2 = 1$.
- (10) Show that a group G cannot be a union of two proper subgroups.