Problem Set 10

(Hand in all.) Below, $d(\neq 0,1)$ is always squarefree.
(1) Let $K=\mathbb{Q}[\sqrt{-29}]$. From III.L. 26 we know that $\left[\mathfrak{P}_{5}\right] \in C l(K)$ has order 3, and we also note that $(2)=(2,1+\sqrt{-29})^{2}=: \mathfrak{P}_{2}^{2}$. Show that \mathcal{O}_{K} has ideals of norm 3 and 11 of order 6 in $\mathrm{Cl}(\mathrm{K})$. [Hint: start by looking for principal ideals of norm 30 and 33.]
(2) We explained how odd primes p decompose in number rings. What about the even prime? Let $K=\mathbb{Q}[\sqrt{d}]$, and show that (in \mathcal{O}_{K})

$$
\begin{array}{ccc}
d \underset{(4)}{\overline{=}} & \Longrightarrow & (2)=(2, \sqrt{d})^{2} \\
d \underset{\overline{(4)}}{\overline{=}} & \Longrightarrow & (2)=(2,1+\sqrt{d})^{2} \\
d \underset{\overline{(8)}}{\overline{=}} & \Longrightarrow & (2)=\left(2, \frac{1+\sqrt{d}}{2}\right)\left(2, \frac{1-\sqrt{d}}{2}\right) \\
d \underset{\overline{(8)}}{\overline{=}} & \Longrightarrow & (2) \text { prime }
\end{array}
$$

(3) Let $K=\mathbb{Q}[\sqrt{-26}]$. Find all non-principal ideals of norm 30 in \mathcal{O}_{K}. [Hint: here are some of your tools: Prop. III.L.25, Pell's equation (i.e. using solutions of $x^{2}+$ $26 y^{2}=m$ to test whether there exists a principal ideal of norm m), uniqueness of ideal factorization, and Caesar.]
(4) Show that $X^{2}=Y^{3}-14$ has no solution with $X, Y \in \mathbb{Z}$. You may assume that $h_{\mathrm{Q}(\sqrt{-14})}=4$. [Hint: if (X, Y) is a solution, put $\alpha:=X+\sqrt{-14}(\operatorname{not} X+Y \sqrt{-14}!!)$. Turn the equation into an equation of ideals, decompose both sides into prime factors, and use uniqueness of ideal factorization to deduce that α is a cube in $\mathbb{Z}[\sqrt{-14}]$.
(5) Let $K=\mathbb{Q}[\sqrt{d}], d \underset{(4)}{\equiv} 2$ or 3 , and $I \subset \mathcal{O}_{K}$ an ideal. Show that $\mathfrak{N}(I)=\left|\mathcal{O}_{K} / I\right|$, where $\mathfrak{N}(I)$ is defined via Hurwitz. [Hint: first compute $\left|\mathcal{O}_{K} / I\right|$ as a determinant.]

