Problem Set 11

(Hand in all.)
(1) [Jacobson p. 163 \#4,5] (i) Show that $\operatorname{End}(\mathbb{Q}) \cong \mathbb{Q}$, where on the left hand side, \mathbb{Q} is considered as an abelian group under addition, and on the right, as a ring. [Hint: there is a natural map from right to left. Apply the Fundamental Theorem IV.B.9.] (ii) Replacing \mathbb{Q} by an arbitrary field R, does this remain true (i.e. End $(R) \cong R$)?
(2) [Jacobson p. $165 \# 2$] Let M be a left R-module and let $B=\{b \in R \mid b x=0(\forall x \in$ $M)\}$. (i) Show that B is an ideal in R. (ii) Show that if C is any ideal contained in B then M becomes a left R / C-module by defining $(a+C) x:=a x$.
(3) [Jacobson p. 166 \#5] Let $V=\mathbb{R}^{n}$, and define a linear transformation $T: V \rightarrow V$ by $T\left(x_{1}, \ldots, x_{n}\right):=\left(x_{n}, x_{1}, \ldots, x_{n-1}\right)$. Consider V as a left $\mathbb{R}[\lambda]$-module as in Example IV.A.2(h), and define $B \subset R$ as in (2). Describe B explicitly.
(4) [Jacobson p. 166 \#8] Let M be a (nonzero) finite abelian group. Can M be made into a Q-module?
(5) [Jacobson p. 169 \#2] Determine $\operatorname{Hom}\left(\mathbb{Z}_{m}, \mathbb{Z}_{n}\right)$ for $m, n \in \mathbb{Z}_{>0}$.
(6) [Jacobson p. 169 \#5,6] (i) Show that, for a left module M over a ring $R, \operatorname{End}_{R}(M)$ is the centralizer in $\operatorname{End}(M)$ of the set of group endomorphisms $\ell_{r}, r \in R$. [Remark: $\operatorname{End}(M)$ with no subscript means abelian group homomorphisms; with the subscript R, it means R-module homomorphisms.]
(ii) Do we have $\ell_{r} \in \operatorname{End}_{R}(M)$?
(7) Regarding \mathbb{Q}^{2} as a module over $\mathbb{Q}[i]$ by $P(i) . \vec{v}:=P\left(\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\right) \vec{v}$, compute $E n d_{\mathbb{Q}[i]}\left(\mathbb{Q}^{2}\right)$ explicitly as a subring of $\operatorname{End}\left(\mathbb{Q}^{2}\right)=M_{2}(\mathbb{Q})$. [Here $i=\sqrt{-1}$.]
(8) [Jacobson p. 170 \#8] A left ideal I of R is called maximal if $R \neq I$ and there exist no left ideals I^{\prime} such that $I \subsetneq I^{\prime} \subsetneq R$. Show that a module M is irreducible if and only if $M \cong R / I$ where I is a maximal left ideal of R.
(9) [Jacobson p. 175 \#3] Let R_{n} denote a free right R-module with base $\left\{e_{1}, \ldots, e_{n}\right\}$. Let $\eta \in \operatorname{End}_{R}\left(R_{n}\right)$ and write $\eta\left(e_{i}\right)=\sum_{j=1}^{n} e_{j} a_{j i}$. Show that $\eta \mapsto A=\left[a_{i j}\right]$ yields an isomorphism of $\operatorname{End}_{R}\left(R_{n}\right)$ with $M_{n}(R)$.
(10) [Jacobson p. 175 \#4] Let R be commutative. Show that if η is a surjective endomorphism of R^{n} (as R-module), then η is bijective. Does the same conclusion hold if η is injective?
(11) [Jacobson p. 179 \#2] Let M be a (left) module (over some ring R), and M_{1}, \ldots, M_{n} be submodules such that $M=\sum_{i} M_{i}$ and the "triangular" set of conditions

$$
\begin{gathered}
M_{1} \cap M_{2}=0 \\
\left(M_{1}+M_{2}\right) \cap M_{3}=0 \\
\vdots \\
\left(M_{1}+\cdots+M_{n-1}\right) \cap M_{n}=0
\end{gathered}
$$

hold. Show that $M=\oplus_{i} M_{i}$.
(12) [Jacobson p. 179 \#3] Show that $\mathbb{Z}_{p^{e}}, p$ a prime, $e>0$, regarded as a \mathbb{Z}-module, is not a direct sum of any two nonzero submodules. Does this hold for \mathbb{Z} ? Does it hold for \mathbb{Z}_{n} for other positive integers n ?

