Problem Set 12

(Due Friday Dec. 18. Hand in all. This is the last HW to turn in. I may or may not post a few problems to look at as a Problem Set 13.)
(1) [Jacobson p. 188\#1] Determine the structure of \mathbb{Z}^{3} / K, where K is generated by $f_{1}=(2,1,-3), f_{2}=(1,-1,2)$. (This is a warm-up for the next problem.)
(2) Let G be the abelian group determined by generators V, W, X, Y, Z and relations

$$
\begin{aligned}
V-7 W+14 Y-21 Z & =0 \\
15 V-7 W-2 X+10 Y-5 Z & =0 \\
7 V-3 W-2 X+6 Y-9 Z & =0 \\
V-3 W+2 Y-9 Z & =0
\end{aligned}
$$

Find the rank and torsion invariants (invariant factors) by putting an appropriate matrix in normal form. Write G in the form (IV.C.10) and IV.C.13.
(3) [Jacobson p. 181 \#2] Find a base for the submodule of $\mathbb{Q}[\lambda]^{3}$ generated by $f_{1}=$ $\left(2 \lambda-1, \lambda, \lambda^{2}+3\right), f_{2}=\left(\lambda, \lambda, \lambda^{2}\right)$, and $f_{3}=\left(\lambda+1,2 \lambda, 2 \lambda^{2}-3\right)$. [Hint: use the algorithm from the proof of IV.C.2.]
(4) [Jacobson p. 185 \#2] Find a normal form for the matrix

$$
A=\left(\begin{array}{cccc}
\lambda-17 & 8 & 12 & -14 \\
-46 & \lambda+22 & 35 & -41 \\
2 & -1 & \lambda-4 & 4 \\
-4 & 2 & 2 & \lambda-3
\end{array}\right)
$$

in $M_{4}(\mathbb{Q}[\lambda]), \lambda$ an indeterminate. Also find invertible matrices P and Q such that $P A Q$ is in normal form.
(5) [Jacobson p. 186 \#3] Determine the invariant factors of

$$
A=\left(\begin{array}{ccc}
\lambda+1 & 2 & -6 \\
1 & \lambda & -3 \\
1 & 1 & \lambda-4
\end{array}\right)
$$

both by putting it in normal form (to get the d_{i} directly), and by using $d_{1}=\Delta_{1}$, $d_{2}=\frac{\Delta_{2}}{\Delta_{1}}, d_{3}=\frac{\Delta_{3}}{\Delta_{2}}$ (without putting it in normal form).
(6) In problems (4) and (5) $A=\lambda \mathbb{1}-B$ for $B \in M_{n}(\mathbb{Q})$. In each case, determine the minimal polynomial of B, as well as its rational and Jordan canonical forms.
(7) [Jacobson p. 186\#10] Let R be a ring and define the elementary matrix $T_{i j}(a), i \neq j$, $a \in R$, as in the notes. Verify the four Steinberg relations
(i) $\left(T_{i j}(a)\right)^{-1}=T_{i j}(-a)$.
(ii) $T_{i j}(a) T_{i j}(b)=T_{i j}(a+b)$.
(iii) $\left[T_{i j}(a), T_{j k}(b)\right]=T_{i k}(a b)$ if $k \neq i$ (where the commutator is $[x, y]:=x^{-1} y^{-1} x y$).
(iv) $\left[T_{i j}(a), T_{k \ell}(b)\right]=1$ if $j \neq k, i \neq \ell$.
(8) [Jacobson p. 188 \#2] Determine the structure of $M=\mathbb{Z}[\mathbf{i}]^{3} / K$ where K is generated by $f_{1}=(1,3,6), f_{2}=(2+3 \mathbf{i},-3 \mathbf{i}, 12-18 \mathbf{i})$, and $f_{3}=(2-3 \mathbf{i}, 6+9 \mathbf{i},-18 \mathbf{i})$. In particular, show that M is finite (of order 352512). [Hint: this is similar to problem (2) in that you need to write down a matrix A and reduce it to normal form. Note that $\mathbb{Z}[\mathbf{i}]$ is Euclidean (you can just use the absolute value).]
(9) [Jacobson p. $193 \# 1]$ Let $R=\mathbb{R}[\lambda]$ and suppose M is a direct sum of cyclic R modules whose order ideals are the ideals generated by the polynomials $(\lambda-1)^{3}$, $\left(\lambda^{2}+1\right)^{2},(\lambda-1)\left(\lambda^{2}+1\right)^{4}$, and $(\lambda+2)\left(\lambda^{2}+1\right)^{2}$. Determine the elementary divisors and invariant factors of M.
(10) Determine the number of non-isomorphic abelian groups of order 900, and find the invariant factors d_{i} (in the structure theorem) for each group. [Hint: use IV.C.13-14, then convert to the form (IV.C.10).]
(11) [Jacobson p. 202 \#4] Verify that the characteristic polynomial of

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-2 & -2 & 0 & 1 \\
-2 & 0 & -1 & -2
\end{array}\right)
$$

is a product of linear factors in $\mathbb{Q}[\lambda]$. Determine the rational and Jordan canonical forms for A in $M_{4}(\mathbb{Q})$. Also find matrices which show that A is similar to these canonical forms.
(12) [Jacobson p. 202 \#8] Prove that any nilpotent matrix in $M_{n}(\mathbb{F})$ is similar to a matrix of the form

$$
\left(\begin{array}{lll}
N_{1} & & \\
& \ddots & \\
& & N_{s}
\end{array}\right)
$$

where the N_{i} are blocks of the form

$$
\left(\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & 1 & & \\
& & \ddots & \ddots & \\
& & & 0 & 1 \\
& & & & 0
\end{array}\right) .
$$

(13) Consider the $n \times n$ cyclic permutation matrix

$$
P_{n}:=\left(\begin{array}{ccccc}
0 & 1 & 0 & & \\
& 0 & 1 & \ddots & \\
& & 0 & \ddots & 0 \\
& & & \ddots & 1 \\
1 & & & & 0
\end{array}\right)
$$

(where entries not shown are zero) over any field \mathbb{F}. Find the normal form of $\lambda I_{n}-P_{n}$. Use this to do Jacobson p. $202 \# 12$, in particular for P_{7} over \mathbb{Z}_{7}. In contrast, what happens for P_{6} over \mathbb{Z}_{7} ?

