PROBLEM SET 2

Hand in all.

- (1) Show that $\exp(\mathfrak{S}_n) = \text{lcm}[1, ..., n]$. Find a counterexample to the " \Leftarrow " part of Corollary (II.D.15) if G is not assumed abelian.
- (2) Find a counterexample to Prop. (II.D.13) for G nonabelian.
- (3) Using definition (II.E.10), prove that $H \times K$ is a direct product of H and K. Then prove that, up to isomorphism, it is the unique direct product of H and K.
- (4) Show, carefully, that the order of the element $\bar{a} = a + n\mathbb{Z}$ of \mathbb{Z}_n is n/(n, a).
- (5) Think of \mathfrak{A}_4 as the group of rotational symmetries of a regular tetrahedron T, and let E_1, \ldots, E_6 be the edges of T. Each element of \mathfrak{A}_4 permutes E_1, \ldots, E_6 and therefore gives us an element of \mathfrak{S}_6 . Work out the 12 elements of \mathfrak{S}_6 which occur in this way, starting with the cycle structure. Explain why they must form a subgroup. (Use a result rather than checking it by hand.)
- (6) Which of the following groups are isomorphic: $\mathbb{Z}_4 \times \mathbb{Z}_6$, D_{12} , $\mathbb{Z}_{12} \times \mathbb{Z}_2$, $\mathfrak{A}_4 \times \mathbb{Z}_2$, \mathbb{Z}_{35}^* , $D_6 \times \mathbb{Z}_2$?
- (7) Check that conjugation induces automorphisms, and that for any permutation α , $\alpha(i_1i_2\cdots i_r)\alpha^{-1}=(\alpha(i_1)\alpha(i_2)\cdots\alpha(i_r)).$
- (8) Compute the group of automorphisms (self-isomorphisms) of \mathbb{Z} , \mathbb{Z}_m , and \mathfrak{S}_3 . [Hint: any homomorphism is determined by where it sends a generating set (why?), and any isomorphism sends elements to elements of the same order.] By "compute", I mean construct an isomorphism from some group we have written down already to $\operatorname{Aut}(G)$ in each case.
- (9) [Jacobson p. 53 #3] Let H_1 and H_2 be subgroups of G. Show that any right coset relative to $H_1 \cap H_2$ is the intersection of a right coset of H_1 with a right coset of H_2 . Use this to prove *Poincaré's Theorem* that if H_1 and H_2 have finite index in G then so has $H_1 \cap H_2$.