PROBLEM SET 3

Hand in all.

(1) Prove Burnside's lemma:¹ given a finite group G acting on a finite set X, write X^g for the fixed-point set of $g \in G$ and X/G for the set of orbits. Then we have

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

Prove this by decomposing in two different ways [Hint: stabilizers and fixed-point sets] the subset $S \subset G \times X$ consisting of all ordered pairs (g, x) with g.x = x, and using the Orbit-Stabilizer Theorem.

- (2) Let $X = \{1, 2, 3, 4\}$ and G be the subgroup of the symmetric group \mathfrak{S}_4 generated by (1234) and (24). Work out the orbits and stabilizers for the diagonal action of G on $X \times X$ (i.e. g.(x, y) := (g.x, g.y)); also verify Burnside in this case.
- (3) Let *n* be even, and α and β be an (n-1)-cycle resp. an (n-3)-cycle in the alternating group \mathfrak{A}_n . Compute the orders of $\operatorname{ccl}_{\mathfrak{A}_n}(\alpha)$ and $\operatorname{ccl}_{\mathfrak{A}_n}(\beta)$.
- (4) Show that every group of order 4n + 2 contains a subgroup of order 2n + 1. [Hint: use Cayley's theorem and Cauchy's theorem and think odd and even.]
- (5) Find all normal subgroups of \mathfrak{S}_5 and \mathfrak{A}_5 . [Hint: you want to use (II.I.5)(iv) here. See the examples that follow it.]
- (6) Let H be a proper subgroup of a finite group G. Prove that $G \neq \bigcup_{g \in G} i_g(H)$.
- (7) Read Theorem 1.12 (and its proof) in Jacobson and use it to do exercise 13 on p. 79 of Jacobson.

¹or, as has been suggested, "not-Burnside's lemma" since Burnside attributed it to Frobenius...