Problem Set 5

(Hand in all.)
(1) Determine all subgroups of the mod 3 Heisenberg group (II.M.17). For the normal ones, determine the quotient group.
(2) Show that $\operatorname{Aut}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right) \cong \mathrm{GL}\left(2, \mathbb{Z}_{p}\right)(2 \times 2$ matrices with $\bmod p$ entries which are invertible $\bmod p$), and check that this has order $(p-1)^{2} p(p+1)$.
(3) Let $\theta: H \rightarrow \operatorname{Aut}(K)$ be a group homomorphism. Prove that $K \rtimes H$ (one usually writes this instead of \rtimes_{θ}) sits in a split short exact sequence with K on the left and H on the right.
(4) Classify the groups of order 490 up to isomorphism. Start by proving that none of them are simple. [Edit: this problem is a bit too hard I think. More reasonable is this: classify the groups of order 245 up to isomorphism. Now, what can you say about the classification of groups of order 490? You don't have to do a complete classification, but say something about it and attempt a partial classification.]
(5) Find all Sylow 3 -subgroups of the symmetric group \mathfrak{S}_{6}.
(6) Do Jacobson p. $79 \# 10$. (by a famous theorem, these wreath products $G \imath H$ actually turn out to contain all extensions of H by G as subgroups. You may also want to look at \#16 on p. 84, but you don't have to hand it in.

