PROBLEM SET 7

(Hand in all.)

(1) [Jacobson p. 97 #1] Show that the matrix

$$\begin{pmatrix} 1 & 4 & 1 \\ 0 & 1 & -1 \\ -3 & -6 & -8 \end{pmatrix}$$

is invertible in $M_3(\mathbb{Z})$ and find its inverse.

- (2) [Jacobson p. 97 #2] Prove that if R is a commutative ring then AB = 1 in $M_n(R)$ implies BA = 1. (This is not always true for noncommutative R.)
- (3) [Jacobson p. 97 #7] Determine C(S) (the set of all elements commuting with S) where S is the single matrix $N = \mathbf{e}_{12} + \mathbf{e}_{23} + \cdots + \mathbf{e}_{n-1,n}$.
- (4) Show that the set of ideals in a ring R forms a monoid under multiplication. Do they satisfy the distributive law I(J + K) = IJ + IK?
- (5) State and prove a uniqueness result for Hermite normal form. (We know it isn't unique as a matrix, unlike rref for fields. So, what attributes are unique (i.e. constitute invariants of the original matrix)?
- (6) Prove that ± 3 are not of the form $m^2 10n^2$ ($m, n \in \mathbb{Z}$).
- (7) [Jacobson p. 103 #6] Let R be a commutative ring and N denote the set of nilpotent elements of R. Show that N is an ideal and that R/N contains no non-zero nilpotent elements.
- (8) [Jacobson p. 109 #2] (a) Given $u \in R^*$ and $\eta: R \to R'$ a homomorphism, show that $\eta(u)$ is a unit in R'. (b) Suppose η is surjective. Does this imply that (under η) the group of units R^* surjects onto $(R')^*$?
- (9) [Jacobson p. 110 #4] Show that if R is a commutative ring of prime characteristic p, then $\phi: R \to R$ defined by $a \mapsto a^p$ is a homomorphism (also called an "endomorphism of R"). Is this an automorphism?
- (10) [Jacobson p. 110 #5] Let F be a finite field of characteristic p (a prime). Show that p-1||F|-1. Hence conclude that if |F| is even then the characteristic is 2. (We shall see later that |F| is a power of p.)
- (11) [Jacobson p. 110#7] If S is a subset of a ring (field) R then the *subring* (*subfield*) *generated by* S is defined to be the intersection of all the subrings (subfields) containing S. If this is R itself then S is called a *generating set* for R. Show that if η_1 and η_2 are homomorphisms from R to R' which agree on the elements of a generating set $S \subset R$, then $\eta_1 = \eta_2$.
- (12) Let $R = \mathbb{Z}[\alpha]$, where $\alpha := \frac{1+\sqrt{-19}}{2}$. Show that R is *not* Euclidean, in contrast to problem (8) from last week. [Hint: let s be a nonzero nonunit of minimal $\delta(s)$, and consider the image of α in R/(s). Use the fact that $\alpha^2 \alpha + 5 = 0$, and the result of last week's problem (7).]

1