Problem Set 8

(Hand in all.)
(1) [Jacobson p. 111 \#17] Determine the ideals and maximal ideals and prime ideals of $\mathbb{Z}_{60} \cong \mathbb{Z} /(60)$.
(2) [Jacobson $p .118$ \#5] Let R be a commutative ring, and S a submonoid of the multiplicative monoid of R. In $R \times S$, define $(a, s) \sim(b, t)$ if there exists a $u \in S$ such that $u(a t-b s)=0$. Show that this is an equivalence relation in $R \times S$. Denote the equivalence class of (a, s) as a / s and the quotient set consisting of these classes as $R S^{-1}$. Show that $R S^{-1}$ becomes a ring relative to $a / s+b / t=(a t+b s) / s t$, $(a / s)(b / t)=a b / s t, 0=0 / 1$, and $1=1 / 1$. Show that $a \mapsto a / 1$ is a homomorphism of R into $R S^{-1}$, and that this is a monomorphism if and only if no element of S is a zero-divisor in R. Show that the elements $s / 1, s \in S$, are units in $R S^{-1}$.
(3) [Jacobson p. $126 \# 2]$ Show that $\sqrt{3} \notin \mathbb{Q}[\sqrt{2}]$ and that the real numbers $1, \sqrt{2}, \sqrt{3}, \sqrt{6}$ are linearly independent over \mathbb{Q}. Show that $u=\sqrt{2}+\sqrt{3}$ is algebraic and determine an ideal I such that $\mathbb{Q}[x] / I \cong \mathbb{Q}[u]$.
(4) [Jacobson p. 133 \#9] Show that the ideal $\left(3, x^{3}-x^{2}+2 x-1\right)$ in $\mathbb{Z}[x]$ is not principal.
(5) [Jacobson p. 133 \#13] Prove Wilson's theorem: if p is a prime in \mathbb{Z}, then we have $(p-1)!\underset{(p)}{\overline{=}}-1$.
(6) A commutative ring is local if it has a unique maximal ideal.
(a) Using problem (2) above with $R=\mathbb{Z}, S=\{b \in \mathbb{Z} \mid p \nmid b\}$, prove that $R S^{-1}$ is local.
(b) If \mathcal{R} is a local ring with unique maximal ideal \mathfrak{m}, prove that $a \in \mathcal{R}$ is a unit if and only if $a \notin \mathfrak{m}$. [Hint: you will need to use (III.D.27).]
(7) Find an inverse (fractional ideal) for $I=(15+25 \sqrt{-10}, 25-40 \sqrt{-10}) \subset \mathbb{Z}[\sqrt{-10}]=$ R.
(8) [Jacobson p. 140 \#3] (Newton's identities. See Jacobson. Statement of problem is long but solution need not be.)

