PROBLEM SET 9

(Hand in all.)

- (1) [Jacobson p. 137 #7] Suppose \mathbb{F} is a finite field ($|\mathbb{F}| = q < \infty$). Let $f(x_1, \ldots, x_r) \in \mathbb{F}[x_1, \ldots, x_r]$ be a polynomial of degree n < r, the number of indeterminates. Assume $f(0, \ldots, 0) = 0$. Prove that there exist $(a_1, \ldots, a_r) \neq (0, \ldots, 0)$ such that $f(a_1 \ldots, a_r) = 0$. [Hint: Look at the preceding 2 exercises in Jacobson, and include (short) solutions in your answer, since #5 feeds into #6 and you need to use the result of #6 to do #7. For #6, look at the proof of III.G.25 in the notes; for #5, you just need to remember something about the multiplicative group of \mathbb{F} .]
- (2) (a) Show that for $p \neq 2$, $\left(\frac{a}{p}\right) = 1 \iff a^{\frac{p-1}{2}} \equiv 1$. [Hint: the multiplicative group of a finite field is . . .] (b) Show $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$. (c) Let p be a prime of the form $4m + 1, m \in \mathbb{Z}$. Show $\left(\frac{-1}{p}\right) = 1$, hence that p is not prime in $\mathbb{Z}[i]$, hence that $p = a^2 + b^2$ ($a, b \in \mathbb{Z}$).
- (3) Recall that we know $R = \mathbb{Z}[i]$ is a UFD, so that the primes and irreducibles in R are the same. Find all of them.
- (4) [Jacobson p. 146 #3, 4 Show that (a) $\mathbb{Z}[\sqrt{-5}]$ and (b) $\mathbb{Z}[x]$ satisfy the DCC. Also, say which one (or both, or neither) is a UFD.
- (5) [Jacobson p. 147 #8] Let *p* be a prime of the form 4n + 1 and let *q* be a prime such that the Legendre symbol $\left(\frac{q}{p}\right) = -1$ (cf. III.J.16). Show that $\mathbb{Z}[\sqrt{pq}]$ is not a UFD.
- (6) [Jacobson p. 149 #4] Let *D* be a PID, *E* a domain containing *D* as a subring. Show that if *g* is a GCD of *a* and *b* in *D*, then *g* is also a GCD of *a* and *b* in *E*.
- (7) [Jacobson p. 150 #12] Apply Euclid's algorithm to the polynomials $g = x^3 + x^2 + x 3$ and $f = x^4 x^3 + 3x^2 + x 4$ in $\mathbb{Q}[x]$ to find their GCD.
- (8) [Jacobson p. 150 #13, 14, 15 (as one problem). This is too long to type out here, but it is a fantastic problem which uses the Euclidean algorithm for F[x] to provide an explanation of partial fraction decompositions.]
- (9) Show (i) $x^5 4x + 2$ and (ii) $x^4 + 4x^3 + 10x^2 + 12x + 7$ are irreducible in $\mathbb{Q}[x]$. [Hint: for one of them, apply a linear change of variable.]
- (10) [Jacobson p. 154 #3] Show that if *p* is a prime (in Z) then the polynomial obtained by replacing *x* by *x* + 1 in *x^{p−1}* + *x^{p−2}* + ··· + 1 = (*x^p* − 1)/(*x* − 1) is irreducible in Q[*x*]. Hence prove that the *cyclotomic polynomial x^{p−1}* + *x^{p−2}* + ··· + 1 is irreducible in Q[*x*].
- (11) [Jacobson p. 154 #4] Obtain factorizations into irreducible factors in $\mathbb{Z}[x]$ of the following polynomials: $x^3 1$, $x^4 1$, $x^5 1$, $x^6 1$, $x^7 1$, $x^8 1$, $x^9 1$, $x^{10} 1$.
- (12) [Jacobson p. 154 #5] Prove that if D is a domain which is not a field then D[x] is not a PID.