
I. Galois Theory

Several of the concepts from [Algebra I], like normal subgroups
and finite fields, go back to Galois around 1830. His most important
paper, the “Mémoire sur les conditions de résolubilitié des équations
par radicaux”, was written when he was 19. Around the same time,
he was expelled from university for his anti-monarchist political ac-
tivities. A few months later he received the rejection of this paper in
prison; and a year later, not long after being released, was killed in a
duel. He was a passionate person who lived in a turbulent time and
lost his father to suicide when he needed him most.

In his article, Galois considered groups of permutations of the
roots of a polynomial f (x) over Q, which preserve all algebraic rela-
tions among these roots. We now think of these “Galois groups” in
terms of automorphisms of the field extension generated by these
roots. Galois discovered a correspondence between intermediate
fields in the extension and subgroups of the Galois group. This leads
to the main result of the theory, that the original equation f (x) = 0
may be solved by radicals if and only if its Galois group is solvable (a
term we’ll define in due course).

From this, one immediately recovers the insolubility by radicals
of a general quintic equation, which had already been proved by
Ruffini and Abel; but one also gets criteria for when (and how) a
non-general polynomial of degree≥ 5 can be solved. There are many
other concrete, attractive applications we will meet along the way,
such as the impossibility of trisecting an angle, duplicating a cube,
or constructing a regular 7-gon with straightedge and compass; and
we shall also be able to tie off some loose ends from our brief study
of algebraic number rings [Algebra I, §III.L].
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I.A. Field extensions

Some of what follows will be review from [Algebra I]: in partic-
ular, the case of an algebraic extension will look familiar.

Let K be a field.

I.A.1. DEFINITION. An extension of K is a pair (ı, L) consisting
of a field L and a field homomorphism1 ı : K ↪→ L. (We will often
suppress the “ı”, especially when we are considering K as a subfield
of L, viz. K = ı(K).)

I.A.2. EXAMPLE. So why would we care about the specific map?
The first issue is that there may be several ways to realize K as a
subfield of L. Take L = R, and consider the monic polynomial
p(x) := x3 − 3x− 1 ∈ Q[x].

• This is clearly irreducible. (Otherwise, by Gauss’s Lemma, it would
factor over Z into a quadratic and linear factor, hence possess an
integral root dividing the constant term 1. But p(1) = −3 and
p(−1) = 1, contradiction.)
• So K := Q[x]/(p(x)) is a field. (Let’s remind ourselves of how to

see this explicitly. For convenience, we may write K = Q[θ] where
θ := x̄ is the image of x under Q[x] � Q[x]/(p(x)). Now given
any q(x) ∈ Q[x] \ (p(x)), we have gcd(p, q) = 1; so applying the
Euclidean algorithm in Q[x] yields g, h ∈ Q[x] with qg + ph = 1.
So for any q(θ) ∈ K \ {0}, we have g(θ) = q(θ)−1.)
• As an element of R[x], p(x) splits into distinct linear factors, i.e.

has 3 real roots θ1, θ2, θ3 ∈ R. (Let’s be lazy and use Calculus,
specifically the intermediate value theorem: we have p(−2) =

−3, p(−1) = 1, p(1) = −3, and p(2) = 1, which is enough.)

So we get three different ring homomorphisms2

ϕi : Q[x]→ R

x 7→ θi

1Such a homomorphism is automatically injective (why?). We will usually refer to
the homomorphism itself as an embedding.
2Note that ϕi necessarily is the “identity” on Q, so we don’t have to specify that.
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which all have kernel (p(x)). (Clearly ker(ϕi) ⊇ (p(x)) for each
i; and (p(x)) is a maximal ideal in Q[x] by irreducibility of p.) By
the Fundamental Theorem for ring homomorphisms, these produce
three distinct embeddings ϕ̄i : K = Q[θ] ↪→ R, sending θ 7→ θi.

However, the images ϕi(K) are in fact equal. This is because,
given a root θ of p, 2− θ2 is another root, and so (using θ3 = 3θ + 1)
2− (2− θ2)2 = θ2 − θ − 2 is a third. These are distinct by unique
representation of elements of a cubic number field by expressions of
the form aθ2 + bθ + c. So we find that, for any i, Q[θi] contains all
three {θj}.

If you like, you can get your hands on the roots as follows: write

ζk := e
2π
√
−1

k ∈ C; then θi = ζ1+3i
18 + ζ

1+3i
18 = 2 cos((20 + 60i)◦) does

the job.

I.A.3. EXAMPLE. The second issue, as you may have guessed, is
that we may not get so lucky as we did at the end of the last example,
and these “realizations” may truly yield distinct subfields of L. Take
L = C, and look at p(x) := x3 − 2.

• This is irreducible, by Eisenstein and Gauss.
• Hence K := Q[x]/(p(x)) = Q[θ] is a field.
• In C[x], we have

p(x) = ∏3
i=1(x− θi) = (x− 3

√
2)(x− ζ3

3
√

2)(x− ζ2
3

3
√

2).

Defining ϕi as before, we see that ϕ1(K) lives inside R, whereas
ϕ2(K) and ϕ3(K) most certainly do not. In fact, all three are distinct
subfields of C.

For most of the remainder of the section, we shall use the notation
L/K for field extensions; you can just think of K as a subfield of L.

I.A.4. PROPOSITION. Given an extension L/K, L is a vector space
over K.

PROOF. Recalling that a K-vector space is the same thing as a
K-module (since K is a field), simply define the module structure
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by multiplication (k · ` := k`) and check the axioms in [Algebra I,
IV.A.1]. �

I.A.5. DEFINITION. The degree of L/K is the vector-space dimen-
sion [L:K] := dimK(L); the extension is called finite or infinite de-
pending on this degree.

There is a useful visual representation of degrees:

L

[L:K]

K

, e.g.

C

2

R

,

R

∞

Q

,

which motivates the

I.A.6. THEOREM (Tower Law). Given M/L and L/K extensions,

(I.A.7) [M:K] = [M:L][L:K].

PROOF. Say RHS(I.A.7) = mn < ∞, and x1, . . . , xm ∈ M [resp.
y1, . . . , yn ∈ L] is a basis over L [resp. K]. I claim that the {xiyj} are a
basis for M over K (yielding (I.A.7)):

M

m

mn L

n

K

• They span: given µ ∈ M, we have `i ∈ L such that
µ = ∑i `ixi. Moreover, for each `i, there exist kij ∈ K
such that `i = ∑j kijyj. Hence µ = ∑i,j kijxiyj.
• They are independent: if 0 = ∑i,j γijxiyj (γij ∈ K),

then writing δi := ∑j γijyj ∈ L, we have 0 = ∑i δixi.
Since {xi} is a basis of M/L, all δi = 0; and then
since {yj} is a basis of L/K, γij = 0.

Conversely if LHS(I.A.7) = ` < ∞, let z1, . . . , z` ∈ M be a basis
over K. Since these span M as a vector space over L, [M:L] < ∞.
Moreover, [L:K] < ∞ since L/K is a vector subspace of the finite-
dimensional vector space M/K.3 Hence RHS(I.A.7) < ∞ and we get
(I.A.7) as before. �

3Let A0 be a maximal linearly independent subset of L/K, which exists (and is
finite) since [M:K] < ∞. Clearly this must span L.



I.A. FIELD EXTENSIONS 5

I.A.8. REMARK. Given L1/L0, L2/L1, . . ., Ln/Ln−1, inductively
applying I.A.6 yields

[Ln:L0] = ∏n
i=1[Li:Li−1].

This all seems rather stupid, but it’s actually powerful when used
in the right way. For instance, ask yourself: if [M:K] is a prime num-
ber, what fields are intermediate between M and K?

I.A.9. COROLLARY. If M/K is an extension, and L ⊂ M is a subfield
containing K, then [L:K]

∣∣[M:K].

We want to study intermediate extensions generated by elements.
Suppose L/K is an extension, and S ⊂ L is a subset.

I.A.10. DEFINITION. The extension K(S) of K generated by S is
the intersection of all subfields of L containing K ∪ S . (We write
K(α1, . . . , αm) for K({α1, . . . , αm}).)

An immediate consequence of the definition is that for a pair
of sets S , T we have K(S)(T ) = K(S ∪ T ), which wil be written
K(S , T ). A special case is when K1 and K2 are subfields of L contain-
ing K; then K(K1, K2) is the smallest subfield containing both K1 and
K2, called their compositum.

A more concrete description of these extensions is given by the

I.A.11. PROPOSITION. Set S̃ := {∏k
i=1 si | k ∈ Z>0, si ∈ S}∪{1},

and V := K〈S̃〉 the K-linear span. Then

K(S) = {vu−1 | v ∈ V, u ∈ V \ {0}}.

PROOF. The inclusion “⊆” is clear because the RHS is a subfield
of L (i.e. is closed under addition etc.). The reverse inclusion is clear
since any field containing K ∪ S must contain these elements. �

I.A.12. DEFINITION. An extension L/K is simple if there exists
u ∈ L such that L = K(u), in which case u is called a primitive
element for the extension.
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I.A.13. EXAMPLES. (i) C/R and Q(
√

2)/Q are simple.
(ii) R/Q is not simple: given any r ∈ R, I.A.11 gives

Q(r) =
{

p(r)
q(r)

∣∣ p, q ∈ Q[r]; q 6= 0
}

,

which is clearly a countable set, whereas R is uncountable.
(iii) If [L:K] is prime, then L/K is simple. (Why?)

I.A.14. EXAMPLE. Let K = Q[x]/(p(x)), with p(x) = x3 − 3x− 1
as in I.A.2, and take u ∈ K∗. Let’s consider the simple extension

L := K(
√
−u) :=

{
K[y]/(y2 + u), if y2 + u is irreducible over K
K, otherwise.

The question is how to know which case we are in on the RHS; if
L ) K, we say that the extension is proper.

We can use ϕi : K ↪→ R to think of L/K as
ϕi(K)(

√
−ϕi(u))/ϕi(K). In this way, we see that if any

ϕi(u) > 0, then the extension is proper. Indeed, if it is
not proper, then we have a k ∈ K such that k2 = −u,
hence ϕi(k)2 = −ϕi(u), a contradiction. So for exam-
ple, since ϕi(1) = 1 > 0 (for any i), we get the tower
shown at right.

K(
√
−1)

2

6 K

3

Q

What about the converse of the italicized state-
ment? That is, if every ϕi(u) < 0, then is the
extension trivial (L = K)? Consider u = −7, for
instance, and the extension diagram shown. If
K(
√

7) = K, we get the degrees shown with a
“?”, which contradict the Tower Law since 2 - 3.
So we must have [K(

√
7):K] = 2, and the con-

verse fails.

K(
√

7)

3?

1?

K

3

Q(
√

7)

2

Q

So the Tower Law is pretty effective: it shows that if a rational
number isn’t a square in Q, it isn’t a square in K either, with no work.

Let L/K be an extension, u ∈ L, and consider the simple exten-
sion K(u)/K. We have as usual the evaulation map

evu : K[x] � K[u]
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sending x 7→ u, with kernel ( f (x)) (since K[x] is a PID). Since the
image is a domain, f must be irreducible. There are then two cases:

Case 1: ker 6= {0} =⇒ K[u] is a field (=K(u)), with f = mu (nor-
malized to be monic) the minimal polynomial of u.

Case 2: ker = {0} =⇒ evu is an isomorphism =⇒ evu extends

uniquely to an isomorphism K(x)
∼=→ K(u) of fraction fields.

I.A.15. DEFINITION. In Case 1, u ∈ L is algebraic over K.
In Case 2, u ∈ L is transcendental over K.

I.A.16. THEOREM. Given u ∈ L, L/K. Then
(i) u is algebraic ⇐⇒ [K(u):K] < ∞.
(ii) In this case, [K(u):K] = deg(mu).

PROOF. If u is algebraic, then K(u) = K[u] ∼= K[x]/(mu(x)), a
basis over K for which is 1, x, . . . , xd−1 (where d = deg(mu)). Con-
versely, if n := [K(u):K] < ∞, we can’t be in Case 2, since already
dimK(K[x]) = ∞ there (and K(u) = K(x) is still bigger). �

I.A.17. COROLLARY. Given L/K,

Lalg/K := {α ∈ L | α algebraic over K}

is a subfield.

PROOF. Let α, β ∈ Lalg/K. Then β is algebraic over K(α), so

[K(α, β):K] = [K(α)(β):K(α)][K(α):K] < ∞.

Since K(αβ) and K(α + β) are sub-K-vector spaces of K(α, β), they
have finite dimension/degree over K. By I.A.16(i), we therefore have
αβ, α + β ∈ Lalg/K. Finally, if α 6= 0, set µ(x) := xnmα(

1
x ), with n :=

deg(mα); then we have µ( 1
α ) = α−n

���
�:0mα(α) = 0 =⇒ 1

α ∈ Lalg/K. �

I.A.18. EXAMPLE. Consider C/Q. Define Q̄ := Calg/Q in the
above sense. This is the field of algebraic numbers. (Obviously it
contains the ring of algebraic integers Z̄.)

I.A.19. DEFINITION. An algebraic extension L/K is one with L =

Lalg/K. That is, every element of L is algebraic over K.
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Finite extensions are algebraic. (Why? If L/K is finite, and α ∈ L,
then [K(α):K] ≤ [L:K] < ∞.) Are algebraic extensions finite? Cer-
tainly not in general, as Q̄/Q demonstrates. But we do have the

I.A.20. PROPOSITION. The following are equivalent:
(a) [L:K] < ∞.
(b) L/K is algebraic and L is finitely generated over K (in the field sense).
(c) L = K(α1, . . . , αn), with each αi algebraic over K.

PROOF. (a) =⇒ (b): L/K is algebraic since [K(α):K] ≤ [L:K] <
∞ for any α ∈ L. If a1, . . . , an is a basis for L/K then L = K(a1, . . . , an).
(b) =⇒ (c): obvious.
(c) =⇒ (a): apply the Tower Law, together with

[K(α1, . . . , αk−1)(αk):K(α1, . . . , αk−1)] ≤ [K(αk):K] < ∞

for each k). �

I.A.21. COROLLARY. If S ⊂ L is a (possibly infinite) set of elements
algebraic over K, then K(S)/K is an algebraic extension (possibly infinite).

PROOF. β ∈ K(S) =⇒ there exist α1, . . . , αn ∈ S such that β ∈
K(α1, . . . , αn) =⇒ [K(β):K] < ∞. �

I.A.22. COROLLARY. If M/L and L/K are both algebraic extensions,
then M/K is algebraic.

PROOF. We want to show that each α ∈ M is algebraic over K.
Consider its minimal polynomial mα(x) = ∑n

j=0 `jxj with respect to
L. This exhibits α as algebraic over K(`0, . . . , `n), which by I.A.20 is
finite over K. Now apply the Tower Law. �

Automorphisms of field extensions are one of the key concepts in
Galois theory. We finish with the following

I.A.23. PROPOSITION. Suppose L/K is algebraic and τ : L → L is
a field homomorphism fixing K pointwise: τ(k) = k (∀k ∈ K). Then
τ(L) = L; that is, τ is an automorphism.
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PROOF. Given α ∈ L with minimal polynomial mα over K, let
R be the set of roots of mα in L. We know only that α ∈ R and
|R| ≤ deg(mα).

If β ∈ R, then (since coefficients of mα are in K hence fixed by τ)

mα(τ(β)) = τ(mα(β)) = τ(0) = 0

and thus τ(R) ⊂ R. Since τ is injective (like any field homomor-
phism), and R is finite, τ(R) = R.

We conclude that α ∈ τ(L); and since α was arbitrary, τ is surjec-
tive. �


