
10 I. GALOIS THEORY

I.B. Constructible points

The impossibility of trisecting an angle with straightedge and
compass is a celebrated consequence of the theory of field exten-
sions. But for it to have meaning, we have to say what we mean
by “with straightedge and compass”.

Suppose we have an angle θ, as shown in blue. Use a compass to
put a circle of radius4 1 about it; and then draw the line OB with a
straightedge:

θ
O B

C

A
Dα α

β
β1

Now we do something violent. Keeping the compass set to radius
1, we jam its sharp points into the straightedge, which we lay down
on some line through C. Wiggle and shift the straightedge around,
keeping it so that it passes through C, until the two points of the
compass lie on OB and the circle. The segment AD then has length
1, making4ODA isoceles. From the figure, we have

π = θ + (π − 2β) + α =⇒ 2β = α + θ

from angles at O, and

π = β + (π − 2α) =⇒ β = 2α

from angles at D. Conclude that 3α = θ.
This is not a construction with straightedge and compass in the

Euclidean sense, because we used a marked straightedge. That is for-
bidden! We are only supposed to use the straightedge to draw a line
between two preëxisting points. With the compass, we are allowed
to set its radius to the distance between any two such points, and
draw a circle of that radius about a third point. We can mark new

4You always give yourself the points 0 and 1 in Euclidean constructions; and in any
case we could just open the compass and define “1” to be the distance between its
two points.
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points where these lines and circles intersect, and use them as just
described to create new lines and circles, and so on. That’s it. Of
course, what you can construct in this way will depend on what set
of points you start with.

To turn this geometry into algebra, we identify the plane with C,
and give ourselves a finite subset S ⊂ C containing at least {0, 1}.
(For instance, the situation of a given angle θ above corresponds to
taking S = {0, 1, eiθ}.) Set S(1) := S , and define inductively

S(m) := S(m−1) ∪
{

p1p2 ∩ p3p4
∣∣ pi ∈ S(m−1), p1p2 6= p3p4

}
∪
{

C|p1−p2|(p3) ∩ C|p4−p5|(p6)
∣∣ pi ∈ S(m−1), p3 6= p6

}
∪
{

C|p1−p2|(p3) ∩ p4p5
∣∣ pi ∈ S(m−1)

}
,

(I.B.1)

where pq is the line through p, q and Cr(p) the circle of radius r about
p. Setting

C(S) :=
⋃

m>0
S(m),

we make the

I.B.2. DEFINITION. P ∈ C is constructible from S if P ∈ C(S).
We will simply say P is constructible if it is constructible from {0, 1}.

I.B.3. PROPOSITION. C(S) is the smallest5 subfield of C containing S
and closed under two algebraic operations: taking square roots and complex
conjugates.

PROOF. There are two inclusions to verify:

(a) C(S) is contained in any subfield of C containing S and closed un-
der the two algebraic operations. This is checked by showing that
any such field is closed under the three Euclidean operations (by
which one passes from S(m−1) to S(m)) in (I.B.1).

(b) C(S) is such a subfield, so in particular contains the smallest one. For
this, we need to demonstrate that C(S) is closed under all field
theory operations, square roots, and complex conjugation.

5Equivalently, it is the intersection of all subfields containing S and closed under
square roots and complex conjugation.
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We carry out (b) first. Note that, given {0, 1} we can construct the
real and imaginary axes: for the latter, use the picture

0 1

where blue points are in S(2) and red in S(3). Notice that the red
point is a square root of −2, and we also get i =

√
−1 (in S(4)).

Here are pictures for closure under addition and additive inver-
sion:

0 z
z′

z + z′

0

w

−w

where the circles on the left are C|z|(z′) and C|z′|(z). The point is that
since |(z + z′)− z| = |z′| and |(z + z′)− z′| = |z|, z + z′ is one of the
intersection points.

For multiplication, inversion, complex conjugation, and square
roots, we can split z = reiθ into modulus r and argument θ by con-
structing C|z|(0) resp. 0z; and we can reassemble it from these. Mul-
tiplication and square root of moduli are left to the exercises. Here
are diagrams for multiplying and inverting the eiθ parts:

eiθ

eiθ′

1 1

ei(θ+θ′)

eiθ

e−iθ
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In the left picture, the smaller circle is C|eiθ−1|(e
iθ′), which works be-

cause |ei(θ+θ′) − eiθ′ | = |eiθ − 1|. Finally, for 1/r and (eiθ)
1
2 (angle

bisection) we have

1 r

i
(1−r) + i

i
r θ

C
B

A

where on the left, we have i from above, (1− r) + i is obtained by
closure under addition (and additive inversion), and it is enough to
get any point of modulus 1

r . On the right, 4AOC and 4BOC are
similar. This completes (b).

Turning to (a), let F ⊂ C be a subfield closed under square roots
and complex conjugation. Clearly i ∈ F. So for any z = x + iy ∈ F,
we have x = 1

2(z + z̄) and y = 1
2i(z− z̄) in F0 := F∩R. Conversely,

any ordered pair (x, y) ∈ F2
0 (= F0 × F0) gives rise to an element

x + iy ∈ F. (Indeed, we have F = F0[
√
−1].) This identification

means that we can test the Euclidean closure conditions on ordered
pairs in F2

0 ⊂ R2; all we need to know about F0 is that it is a subfield
of R which is closed under taking square roots that remain real.

Now consider the three Euclidean operations described in (I.B.1):

• Lines through pairs of points in F2
0 have equations with coeffi-

cients in F0. So by Cramer’s rule, the solution lies in F2
0.

• The circle about a point in F2
0 with radius the distance between

two points in F2
0 has equation x2 + y2 + 2dx + 2ey + f = 0, with

d, e, f ∈ F0. Consider a line ax + by + c = 0 with a, b, c ∈ F0;
we may assume a 6= 0 (otherwise swap x, y). Substituting into
the conic equation gives a quadratic equation in y. If the roots are
non-real (unreal?) then the line and circle don’t meet. If they are
real, the roots are in F0 since they are obtained via square roots.
• Given two circles of the above form, subtracting their equations

gives a linear equation, and we repeat the last bullet.

This completes the proof of (a). �
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Write S = {0, 1, z1, z2, . . . , zn} and F := Q(z1, . . . , zn, z̄1, . . . , z̄n).
A square-root tower over F =: F1 is a field E =: Fm that is reached by
a sequence of extensions Fi+1 := Fi(ui) with u2

i ∈ Fi.

I.B.4. THEOREM. z ∈ C is constructible from S if and only if it is
contained in a square-root tower over F.

PROOF. By I.B.3, C(S) contains F and any square-root tower E
over it, hence the union F of all such towers. I claim that F is a field
closed under conjugates and square roots (and containing F), hence con-
tains the smallest such field C(S). So F ⊃ C(S) ⊃ F and they are
equal. This is exactly the statement of the Theorem: that the set of
numbers constructible from S equals the set of numbers contained
in square-root towers over F.

We just need to check the claim. Given z, z′ ∈ F, we have z ∈
E = F(u1, . . . , ur) and z′ ∈ E′ = F(u′1, . . . , u′t); but then the composi-
tum E′′ = F(u1, . . . , ur; u′1, . . . , u′t) is a square-root tower containing
both z and z′, and thus their product, sum, inverses, etc. Clearly
(by definition) F is closed under square roots; and since the complex
conjugate of a square-root tower over F is a square root tower over
F̄ = F, F is closed under conjugation. �

I.B.5. COROLLARY. If z ∈ C is constructible, then [Q(z):Q] = 2s for
some s ∈N.

PROOF. By I.B.4, z ∈ Q(u1, . . . , ur) =: E, with u2
i ∈ Fi and (we

may assume) ui /∈ Fi. The Tower Law gives [E:Q] = ∏r
i=1[Fi+1:Fi] =

2r since the degree of each minimal polynomial is 2. Since Q ⊆
Q(z) ⊆ E, we have [Q(z):Q]

∣∣[E:Q] (by I.A.9). �

I.B.6. REMARK. (i) An immediate consequence of I.B.5 is that the
constructible numbers C := C({0, 1}) are contained in Q̄. (By I.B.3,
we also know that C is a field.)

(ii) Another variant of I.B.5 is that if (x, y) (i.e. x + iy) is a con-
structible point, then [Q(x, y):Q] is a power of 2. Argue as follows:
constructibility of z = x + iy is equivalent to that of x and y (C is a
field containing i and closed under conjugation); and if x and y are
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both contained in square-root towers, then concatenating the towers
gives a tower.

(iii) The converse of I.B.5 (and (ii)) is completely false: e.g., if z is
the root of a general quartic polynomial over Q, then [Q(z):Q] = 4
but z does not lie in a square-root tower.

Geometric applications. The only reason I don’t call the next
three results Corollaries (of Theorem I.B.4, which they are) is that
they resolve problems of classical antiquity. They were all proved by
Wantzel in 1837 (in essentially this way).6

I.B.7. THEOREM. A general7 angle cannot be trisected with (unmarked)
straightedge and compass.

PROOF. Assume otherwise: that given S = {0, 1, eiθ} (any θ), we
have eiθ/3 ∈ C(S). Then this should be true in particular for θ =

π/3. Since ζ6 = eiπ/3 ∈ C, in this case we have C(S) = C. So our
assumption implies ζ18 ∈ C, hence ξ := 2 cos(π/9) = ζ18 + ζ̄18 ∈ C.
By I.B.5, we conclude that [Q(ξ):Q] is a power of 2.

But now we recall from I.A.2 that ξ is a root of the irreducible
cubic polynomial f (x) = x3 − 3x− 1. Indeed,

(ζ18 + ζ̄18)
3 − 3(ζ18 + ζ̄18)− 1 = ζ6 + ζ̄6 + 3ζ18 + 3ζ̄18 − 3(ζ18 + ζ̄18)− 1

= ζ6 + ζ̄6 − 1 = 1+
√
−3

2 + 1−
√
−3

2 − 1 = 0.

This gives [Q(ξ):Q] = 3, a contradiction. �

I.B.8. THEOREM. The cube cannot be duplicated (doubled in volume)
with straightedge and compass.

PROOF. [Q( 3
√

2):Q] = 3. �

Next, the constructibility of a regular p-gon (p prime) hinges on
that of ζp = e2πi/p. For now, we limit ourselves to the following nec-
essary condition and three examples. A Fermat prime is any member

6Wantzel proved a stronger “if and only if” statement than our I.B.9; we’ll get to
that later.
7We have to say “general”, because of angles like π/2: eiπ/6 is quadratic, hence
constructible, and trisects it.
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of the sequence 1+ 22s
(s ∈N) which is prime; indeed, it begins with

the five prime numbers 3, 5, 17, 257, 65537. It is conjectured, on good
evidence, that these are the only Fermat primes.

I.B.9. THEOREM. ζp ∈ C =⇒ p is a Fermat prime.

PROOF. Recall that the pth cyclotomic polynomial

Φp(x) :=
xp − 1
x− 1

= xp−1 + xp−2 + · · ·+ 1

is irreducible in Q[x]. (Apply Gauss and Eisenstein to Φp(y+1) =
(y+1)p−1
(y+1)−1 = yp−1 + pyp−2 + (p

2)y
p−3 + · · ·+ ( p

p−2)y + p.) This means
that [Q(ζp):Q] = p− 1. So by I.B.5, constructibility implies p− 1 =

2n, i.e. p = 1 + 2n, for some n ∈N.
Now given any odd integer 2k + 1 > 1, we can factor

A2k+1 + 1 = (A + 1)(A2k − A2k−1 + · · · − A + 1).

If 2k + 1 divides n, then (writing m := n
2k+1 and A = am) this

=⇒ an + 1 = (am + 1)(a2km − a(2k−1)m + · · · − am + 1)

=⇒ 2n + 1 = (2m + 1)(22km − 2(2k−1)m + · · · − 2m + 1)

=⇒ 2n + 1 is not prime,

a contradiction. So n must be a power of 2. �

Unfortunately this doesn’t prove that any p-gon is constructible.
For now, we will content ourselves with establishing that for the first
three Fermat numbers.

Clearly ζ3, being quadratic, satisfies I.B.4; and the construction of
a regular triangle is really easy.

For p = 5, you are asked to do the geometric construction in the
HW; on the algebraic side, one verifies that ζ5 =: x + iy is contained
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in a square-root tower as follows:

ζ3
5 = ζ

2
5

x3 + 3iyx2 − 3y2x− iy3 = x2 − 2iyx− y2

yx2 − y3 = −2yx [take imaginary parts]

4x2 − 1 = 3x2 − y2 = −2x [use x2 + y2 = 1]

(x, y) =
(
−1±

√
5

4 ,±
√

5±
√

5
8

)
.

For p = 17, things get much more complicated, since four it-
erated square-roots are required. But we can summarize the alge-
bra as follows: we are after sin(θ) and z′:= cos(θ), where θ = 2π

17 .
Partition Z∗17 = P1 t P2 t P3 t P6, where Pk := {±k,±4k}; and set
yk := ∑j∈Pk

ζ
j
17. Defining x+ := y1 + y2 and x− := y3 + y6, we com-

pute
y1y2 = y3y6 = x+ + x− = ∑16

j=1ζ
j
17 = −1

and x+x− = 4 ∑16
j=1 ζ

j
17 = −4. This gives

(x− x+)(x− x−) = x2 + 4x− 1 =⇒ x± = 1
2(−1±

√
17)

and

(y− y1)(y− y2) = y2 − x+y− 1, (y− y3)(y− y6) = y2 − x−y− 1,

so that extending Q first by
√

17, then by y1 and by y3 gives a square-
root tower (of degree 8 over Q).8 Now write z′′ = cos(4θ), so that
z′ + z′′ = y1 and z′z′′ = y3; taking a final quadratic extension by the
root z′ of

(z− z′)(z− z′′) = z2 − y1z + y3

produces a degree 16 square-root tower containing z′ and sin(θ) =

1− (z′)2 = 1+ y3− y1z′. It was actually Gauss (1796, at 19) who first
showed a regular 17-gon is constructible.

8Note that adjoining one root of a quadratic equation gives you both, by the qua-
dratic formula. So the degree-8 tower actually contains x± and all the {yj}; and
the degree-16 tower contains z′′.


