18 I. GALOIS THEORY
I.C. Splitting fields

Let f € QJx] be a monic polynomial of degree n. We know that
f has a unique factorization into irreducibles in Q[x], f = f1- - f¢.
In C[x], it splits completely into linear factors, f(x) = [T ;(x — a;),
by the Fundamental Theorem of Algebra. But then this also holds
over L := Q(ay,...,a,) C C, and it can’t hold for any smaller field.
Several questions arise:

(1) What is the degree d := [L:Q|? If f is irreducible over Q (and
n > 2), this need not be n, which is only the lower bound. For
x3 — 1 it is true that d = 3, but for x> — 2 we have d = 6, since
V205 ¢ Q(V2).

(2) For general K, and f € K|x], must there exist an L over which f
splits into linear factors? For instance, maybe K = IF  is a finite
tield, or maybe it is the “function field of an algebraic curve”
(viz., C(x)[y]/ (F(x,y))); in either case, we can’t embed K into
C as we did above.

(3) Is a minimal field extension L/K such that f € K[x] splits in L|x]
unique? One could both worry about different embeddings of
Kinto L, or about whether L itself is unique. More precisely, the
question is: given i1: K < L and i’: K < L' extensions of this
type, do we have an isomorphism ¢: L — L' with po1 =1"?

As we shall see below, (2) and (3) have affirmative answers. (Even
for Q, we'll end up getting around the use of C above.) For (1), we
will say more later. First, let’s give a rigorous

I.C.1. DEFINITION. Let K be a field, f € K[x] a polynomial, and
L/K an extension.

(i) f splits over L if we can write f(x) = c[]';(x — a;) with
«; € L (and c € K).

(i) L(/K) is a splitting field (extension) for f if f splits over L
(asc[T;(x —aj))and L = K(aq, ..., a,).



I.C. SPLITTING FIELDS 19

1.C.2. PROPOSITION. If f splits over L as above, L = K(ay, ..., &) is
equivalent to minimality of L: the nonexistence of L' /K, with L 2 L' D K,
over which f splits.

PROOF. Suppose L is minimal; properness of the containment
L D K(ay,...,a,) would yield a contradiction (take L’ to be the
smaller field), and so it’s an equality.

Conversely, suppose L = K(ay,...,a,) D L' D K, with f split
over L": ie., f = c[T;(x — a}), with &} € L’. But these will also be n
roots (possibly with multiplicity) of f in L, and the roots of f (and
their multiplicities) are unique because L[x]| is a UFD. They generate
L over K by assumption, which forces L’ = L. O

I.C.3. REMARK. Clearly, if L/K is a splitting field extension, then
by the Tower Law L/K is finite, a fortiori algebraic.

Existence of splitting fields.

Since there is now no C in sight, let’s remind ourselves of how
we can algebraically construct extensions containing a root “out of
thin air”.

L.C.4. LEMMA. If f € K][x] is irreducible of degree n, then there exists
a simple extension K(«) /K with [K(«):K] = nand f(«) = 0.

PROOF. We have the natural field extension

1: K— L:=K[x]/(f(x)).
Leta € L denote the image of x under the quotient map v: K[x] — L;
then L = K(a), and f(a) = f(v(x)) =v(f(x)) = 0. Hence f € (my,),
and irreducibility of f then gives f = km, (k € K). Conclude that
[L:K] = deg(my) = deg(f) = n. O

L.C.5. THEOREM. Given f € K[x| of degree n (not necessarily irre-
ducible), there exists a splitting field extension L /K with [L:K]|n!.

PROOF. Induce on n (it’s clear for n = 1). There are two cases:

(a) f not irreducible over K. Write f = gh in K[x], with deg(g) = s
and deg(h) = t both < n. By induction, there exists a splitting field
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Lo/K for g, with [Ly:K]
and Lo = K(B1, ..., Bs)-

Now consider 4 as a polynomial in Ly[x], and apply induction
to get a splitting field extension L/Lg for h with [L:Lo]|t!; that is,
h=pp(x—91)--(x =) withyy, € Loand L = Lo(7y1,...,7t) =
K(B1,..-,Bs;Y1,---,7t). Moreover, since pgpy is the coefficient of
x™ in f, it belongs to K. So we conclude (by [.C.1(ii)) that L/K is a
splitting field extension for f, and that [L:K] = [L:Lo|[Lo:K] divides
s!t! hence divides (s 4 t)! = n! (since (CRaa *th e N).

TSl

(b) f irreducible over K. By 1.C.4, there exists K(a)/K of degree
n, with’ f(x) = (x —a)g(x) in K(a)[x]. Since deg(g) =
we apply induction to get a splitting field extension L/K(«) for g,
with [L:K(a)]|(n — 1)!. Moreover, we get g(x) = p(x — 1) - - (x —
Bn-1), with p € K(a) and B; € L. Clearly L = K(«,B1,...,Bn-1)
and u € K. Hence L/K is a splitting field extension, and [L:K| =
[L:K(«)][K(«):K] divides (n — 1)!n = n!. O

;508 = pg(x —PB1) -+ (x — Bs) with pug € K

n—1,

I.C.6. REMARK. So for an irreducible polynomial f € K[x]|, we
see that the degree d of a splitting field extension satisfiesn < d < n!
and also divides n!. In particular, if n = 2, then d = 2, which reflects
the fact that adjoining one root « of an irreducible quadratic has to
give the other, by dividing f(x)/(x — ) in K(«).

Some examples of splitting fields.

I.C.7. EXAMPLE. Keeping K arbitrary, consider a quadratic poly-
nomial f(x) = x> +ax+0b € K[x]. We break the analysis of the
splitting field into two cases.

char(K) # 2: We may write f(x) =
a®? — 4b, and replace f by g(x) = x

+4)2 — L, where p :=

(x +
2 — £, Clearly g splits over K
(and the splitting field extension is trivial) iff u has a square root
in K. Otherwise, the splitting field extension has degree 2, and is
K(,/#); that is, the quadratic formula tells us that the splitting field

is obtained by adjoining a square root.

That (x — a) | f(x)in K(«)[x] is [Algebra I, I11.G.16].
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char(K) = 2: We can’t divide by 2 here, so the quadratic formula
doesn’t work. For simplicity, let’s take K = Z;, so that there are only
four polynomials x2, x> + x, x2 + 1, and x? + x + 1 to analyze, and
the first three split over K. That leaves f(x) := x> + x + 1, which is
irreducible (why?). Let L/K be its splitting field extension. This is of
degree 2, hence has 4 elements: 0,1, «, B.

At least one of , 8 must be a root, say a. But then (a + 1)? +
(a+1)+1=a’+14+a+1+1=a?>+a+1=0 = a+1is
a root; since it can’t be 0, 1, or a, we have « +1 = B. So f(x) =
(x —a)(x — B), and we also get « + = 1 = apf. To finish off the
multiplication table, a? = a +1=Band 2 =B+ 1 = a.

This also reveals that L is not obtained from K by adjoining a
square root: because a and B are not square roots of anything in
K = {0,1}! (On the other hand, 0 = (« — 1)f(a) = a®> —1 = ais
a cube root of 1.)

Next we turn to several examples with K = Q. You should make
sure you can draw the tower diagrams of §I.A for each of them.

I.C.8. EXAMPLE. Let f(x) := x? —1 € Q[x]. Of course, we have
f(x) = (x = 1)®p(x), with &, (x) = 2;:01 x/ irreducible. Consider
the field L = Q[y]/(P,(y)). If we write { for the image of y under
the quotient map K[y] — L, then ,Z?,...,ZP~ ! are all roots of D,
and distinct in L.1° So in L[x], we have f(x) = 1_[]’.1;01(3( — ), and
L = K(Q) is the splitting field, of degree p — 1 over K.

Of course, L embeds in C as Q({), by sending { ~ {, (or more
generally, to g’;, forany k € {1,...,p — 1}). While it’s easier to con-
struct the splitting field inside C, the more abstract approach allows
us to embed it more easily into in other extensions of Q.

1075 see that each ék, k € Z;;, is a root, use ¥ = 1 to work mod p in exponents;

and note that in @, (%) = 1+ Z]r;_ll 7%, the exponents run over all elements of z,

since multiplication by k is invertible there. That these roots are all distinct is just
the fact that they are represented by different polynomials mod (@ (x)).
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I.C.9. EXAMPLE. Put f(x) := x? —2 € QJx]. This is irreducible
by Eisenstein and Gauss, and is the minimal polynomial of 2’ € R
over Q; so we have [Q(Z%) Q] = p.

But the sphttmg field is bigger than Q(ZP ). Given a € C any root
of f, we have (oc/ZP)p = aP/2 = 1; hence a« = 2PC] for some j €
{0,1,...,p — 1}, and this gives the list of roots of f in C. Conclude
that f splits over L := Q(zi,g,,).

Since L contains the fields Q({;) and Q(Z% ), of respective degrees
p—1and p over Q, by LA9 d = [L:Q] is divisible by both these
degrees hence (as they are coprime) by p(p —1). Sod > p(p —1).

On the other hand, the minimal polynomial f of 2% over Q({p) must
divide f, and so

[L:Q(Zp)] = [Q(Zp)(2

whence by the Tower Law

d = [L:Q] = [L:Q(p)][Q(5p):Q] < p(p —1).
This shows that in fact [L:Q] = p(p — 1).

==

):Q(gy)] = deg(f) < deg(f) =p

1.C.10. EXAMPLE. Take f(x) := (x*> —5)(x?> —7) € Q[x]. We first
consider the intermediate extension Ly := Qly]/ (y*> — 5) (writing v/5
for the image of ).

I claim that x2 — 7 is irreducible over Ly. Otherwise, we would
have

7 = (a+ bV5)? = (a* 4 5b%) + 2ab\/5
for some a,b € Q, which gives11 ab = 0 hence a®> = 7 or 5b% =
which is impossible.

So the splitting field L := Lo[z]/(z* — 7) has degree 2 over Ly,
and degree 4 over Q.

I.C.11. EXAMPLE. Let’s compare the splitting fields for f(x) :=
x® —1and g(x) := x® + 1 over Q.

11Why? Think in vector space terms: 1, /5 is a basis of Ly over Q.
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Of course, f is reducible, and factors as (x — 1)(x + 1) (x? + x +
1)(x? — x +1). If we write L := Q[y]/(y* +y + 1) (with w € L the
image of y), then w?> + w+1=0 = (~w)* - (—w)+1=0.SoL
is the splitting field (and identifies with Q({3) C C).

Working in C, g has roots i, i(3, iC%, —i, —i{3, and —iC%. Since
Q(Z3) # Q(i), the splitting field M is a (proper) quadratic extension
of L, of degree 4 over Q.

Finally, here are a couple more examples over finite fields.

I.C.12. EXAMPLE. Let L be a splitting field for the irreducible
polynomial f(x) := x®> —x+ 1 € Zs[x|, with « € L a root. One
checks that @ + 1 and « — 1 are also roots. Hence L = Zj3(«) and
[L:Z3] = 3.

.C.13. EXAMPLE. What if we take f(x) := x® +x+1 € Z,[x]? I
claim that, as in 1.C.12, the degree-3 extension L := Z,[y|/(f(y)) is
already a splitting field. Writing « for the image of y, over L we have

flx)=(x—a)(x®+ax+b) =x>+ (a—a)x* + (b — an)x — ba
hence b = —% =1+ a?and a = a. It follows that
(@) 4+a@®)+b=a(@)+a® +a®> +1=a(a+1)+a+1+a®>+1=0,

so that a? is also a root of f, proving the claim.
Embeddings of simple extensions.

I.C.14. PROPOSITION. Given a simple algebraic extension K(«)/K,
with my € Klx| the minimal polynomial of a over K; and an embedding
1: K — L, with an element B € L. Write 1: K[x] — L|[x] for the resulting
homomorphism.'* Then the following are equivalent:

(i) Bisaroot of 1(my) € L[x]; and
(ii) there exists j: K(a) — L with j(«) = Band j|g = 1.
Moreover, in this case j is unique.

1275 you have seen, we usually just write 1 for this, but we need the notational
distinction here to make the proof intelligible.
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PROOF. First we get uniqueness out of the way: suppose j and ;'
are two such “extensions of 1”, and consider

KCF:={yeK@)l(r) =/ (1} < K@)
Clearly « € F since j(a) = B = j/(a), and so F = K(&). Turning to
the equivalence:
(i) = (0): 1(ma) (B) = ] (ma) (j(&)) = j(ma(a)) = ;(0) = 0.
(i) = (ii): Write mg for the minimal polynomial of B over K =
1(K). Since1: K — K'is anisomorphism, 1(m,) € K'[x] is irreducible;
and so by (i) we have 1(m,) = mg. Now consider the diagram

(1.C.15) K K[x]

Omitting the dotted arrows for the moment, note that the long com-
position from K to L is just z. Since ker(v/ o1) = 17 !(ker(v')) =
17 1((mg)) = (my), the Fundamental Theorem gives 7 as shown (so
that the diagram commutes). We then just define j := evgoioev, L
obviously this sends k — 1(k), and it sends & — B because 7 sends
X = X. [

I.C.16. COROLLARY. (a) Let K(a)/K be algebraic, and 1: K — L an
embedding, such that 1(my) has r distinct roots in L. Then there are exactly
r distinct embeddings j: K(«) < L with j|x = 1.

(b) Let K(a)/K and K'(a') /K’ be algebraic, with 1: K 5 K. Then
my = 1(my) <= 3 j: K(a) 5 K'(a') with j(a) = & and j|x = 1 (in
which case | is unique).

PROOF. Both follow directly from I.C.14. (For (b), take L := K'(a')
and B := «a.) O
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1.C.17. EXAMPLES. (A) Let K = Q, K(0) = Ql[x]/(x® —3x — 1),
and L = R. Recall from [.A.2 that 3 embeddings ¢;: Q(0) — R were
obtained by sending 6 — 0;, with {6;} the three roots of x> — 3x — 1
in R. By I.C.16(a), these are all of the real embeddings; composing
them with the inclusion R < C gives the only embeddings of Q(6)
in C (why?).

(B) If we change the polynomial to x> — 2 (cf. .A.3), then there is only
one root in IR, but two more in C. In this case, by the Corollary there
is exactly one embedding Q(6) — R, but two additional (conjugate)
embeddings Q(6) — C.

(C) What about, say, K = Z,(y) and K(a) := Z,(y)[x]/(x? —y)?
As we will see below, x” — y is irreducible in Z,(y)[x]. Moreover,
if B is a root in some extension (Z,(y) <3)L, then B = vy and
(x — B)P = xP — pP = xP —y, making B is the only root in L. (The
“freshman’s dream” is obviously crucial here.) So there is only one
embedding K(«) — L extending 1.

Uniqueness and automorphisms of splitting fields. First, we
prove a general result which appears to have nothing to do with
either of these.

1.C.18. THEOREM. Given f € K|x] of degree n, with splitting field
extension L/K of degree d := [L:K]. Let 1: K — L’ be an embedding.
Then there exists 1: L — L' extending'® 1 if and only if 1(f) splits over L.
In this case, the number of possible choices for 1 is < d, with equality if 1(f)
has n distinct roots in L'

PROOF. We may assume f monic, with f(x)=[T";(x—a;) in L[x].

If j exists, then 1(f) = j(f) =TT, (x — j(«;)) splits over L.

For the converse direction and the count of possible ;’s, we in-
duce on d. We need to show that if f splits over L/, we can embed
its splitting field into L’ in < d different ways, extending 1. (The case
d = 1 means that L = K, so the extension is the trivial one and there
is one way to do it.)

BThat s, | = 1.
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So assume d > 1. We may then assume a1 & K; let m,, be its
minimal polynomial over K, and write f = m,, g. In L[x], for some
ordering of the roots, we have m,, (x) = [T_;(x — «;). By assump-
tion, 1(mg,)1(g) = 1(f) splits over L/, so that (in L'[x]) 1(my, )(x) =
[T_;(x — B;) and 1(f)(x) = [T 1(x — B;) for some B; € L'. Notice
that K(a1)/K is simple, and {1, ..., Br} are roots of 1(m,, ) in L, so
that1.C.14 gives foreach i € {1,...,r} aunique;: K(a1) < L' (with
11|k = 1) sending a1 — ;. The number of possible choices here is
the number of distinct p; withi € {1,...,r}.

Setting K1 := K(a1) and f; := ¢ € Kj[x], and choosing an
11: K1 — L', we note that f; splits over L/, and L/Kj is a splitting
field extension for fi, of degree dy := [L:K(a1)] = % =4 <4
By the inductive hypothesis, there exists a j: L < L’ extending 1,
hence 1. The number of possible choices is < dy, with equality iff the
Br+1,- .., Bn are distinct.

Conclude that if B4, . . ., Bx are distinct, then there are r choices of
11, and for each of those, % choices of j extending it, for a total of d
choices overall. Clearly in general this is the upper bound. 0

I.C.19. COROLLARY. Given f € K[x|, an isomorphism 1: K 5K,
and L/K resp. L'/ K' splitting field extensions for f resp. 1(f), there exists
aj:L =X extending 1 (with the same number of choices as in I.C.18).

PROOF. Applying 1.C.18 to 1: K = K’ < L’ yields j: L < L’
extending 1. We need to show that ; is onto. Assume f monic.

Wehave f(x) = AT ;(x —a;) in L[x], hence 1(f) = 1(A) [T 4 (x —
j(a;)) in L'[x]. Since L’ is a splitting field for 1(f), we have L' =
K'(j(x1),...,7(wn)) C j(L). So j is indeed surjective. O

[.C.20. REMARK. In spite of the non-uniqueness of ; in the last
Theorem and Corollary, the latter provides an affirmative answer to
our uniqueness question (3) from the beginning of the section. If
we take K’ = K and 1 = idg in L.C.19, it says that any two splitting
field extensions are isomorphic over K (that is, the isomorphism even
restricts to the identity on K).



I.C. SPLITTING FIELDS 27

1.C.21. COROLLARY. Let f € K[x] be irreducible, L/ K a splitting field
extension for f.

(i) Given &, € L two roots of f, there exists an'* automorphism
o: L = Lwith o(a) = Band o|g = idg.

(ii) There are at most [L:K] automorphisms of L over K; and there are
exactly this number if f has deg( f) distinct roots.

PROOE. For (ii), justapply LC.19 with K’ = K,1 = idg and L' = L.
To see (i), apply L.C.16(b) to produce T: K(«) 5 K(B) (with t|x =
idk) sending « — B. But then L/K(a) and L/K(p) are splitting field
extensions for f, to which we apply 1.C.19 (with 1 = T) to get the
result. O

140t necessarily unique, unless L = K(«).



