I.C. Splitting fields

Let $f \in \mathbb{Q}[x]$ be a monic polynomial of degree n. We know that f has a unique factorization into irreducibles in $\mathbb{Q}[x], f=f_{1} \cdots f_{k}$. In $\mathrm{C}[x]$, it splits completely into linear factors, $f(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)$, by the Fundamental Theorem of Algebra. But then this also holds over $L:=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \subset \mathbb{C}$, and it can't hold for any smaller field. Several questions arise:
(1) What is the degree $d:=[L: Q]$? If f is irreducible over Q (and $n>2$), this need not be n, which is only the lower bound. For $x^{3}-1$ it is true that $d=3$, but for $x^{3}-2$ we have $d=6$, since $\sqrt[3]{2} \tau_{3} \notin \mathrm{Q}(\sqrt[3]{2})$.
(2) For general K, and $f \in K[x]$, must there exist an L over which f splits into linear factors? For instance, maybe $K=\mathbb{F}_{p^{k}}$ is a finite field, or maybe it is the "function field of an algebraic curve" (viz., $\mathbb{C}(x)[y] /(F(x, y))$); in either case, we can't embed K into C as we did above.
(3) Is a minimal field extension L / K such that $f \in K[x]$ splits in $L[x]$ unique? One could both worry about different embeddings of K into L, or about whether L itself is unique. More precisely, the question is: given $\imath: K \hookrightarrow L$ and $\imath^{\prime}: K \hookrightarrow L^{\prime}$ extensions of this type, do we have an isomorphism $\psi: L \rightarrow L^{\prime}$ with $\psi \circ \imath=\imath^{\prime}$?

As we shall see below, (2) and (3) have affirmative answers. (Even for \mathbb{Q}, we'll end up getting around the use of \mathbb{C} above.) For (1), we will say more later. First, let's give a rigorous
I.C.1. Definition. Let K be a field, $f \in K[x]$ a polynomial, and L / K an extension.
(i) f splits over L if we can write $f(x)=c \prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ with $\alpha_{i} \in L$ (and $c \in K$).
(ii) $L(/ K)$ is a splitting field (extension) for f if f splits over L (as $\left.c \prod_{i}\left(x-\alpha_{i}\right)\right)$ and $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
I.C.2. PROPOSITION. If f splits over L as above, $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is equivalent to minimality of L : the nonexistence of L^{\prime} / K, with $L \supsetneq L^{\prime} \supset K$, over which f splits.

Proof. Suppose L is minimal; properness of the containment $L \supset K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ would yield a contradiction (take L^{\prime} to be the smaller field), and so it's an equality.

Conversely, suppose $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right) \supset L^{\prime} \supset K$, with f split over L^{\prime} : i.e., $f=c \prod_{i}\left(x-\alpha_{i}^{\prime}\right)$, with $\alpha_{i}^{\prime} \in L^{\prime}$. But these will also be n roots (possibly with multiplicity) of f in L, and the roots of f (and their multiplicities) are unique because $L[x]$ is a UFD. They generate L over K by assumption, which forces $L^{\prime}=L$.
I.C.3. Remark. Clearly, if L / K is a splitting field extension, then by the Tower Law L / K is finite, a fortiori algebraic.

Existence of splitting fields.

Since there is now no \mathbb{C} in sight, let's remind ourselves of how we can algebraically construct extensions containing a root "out of thin air".
I.C.4. LEMMA. If $f \in K[x]$ is irreducible of degree n, then there exists a simple extension $K(\alpha) / K$ with $[K(\alpha): K]=n$ and $f(\alpha)=0$.

PROOF. We have the natural field extension

$$
\imath: K \hookrightarrow L:=K[x] /(f(x)) .
$$

Let $\alpha \in L$ denote the image of x under the quotient map $v: K[x] \rightarrow L$; then $L=K(\alpha)$, and $f(\alpha)=f(v(x))=v(f(x))=0$. Hence $f \in\left(m_{\alpha}\right)$, and irreducibility of f then gives $f=k m_{\alpha}(k \in K)$. Conclude that $[L: K]=\operatorname{deg}\left(m_{\alpha}\right)=\operatorname{deg}(f)=n$.
I.C.5. Theorem. Given $f \in K[x]$ of degree n (not necessarily irreducible), there exists a splitting field extension L / K with $[L: K] \mid n!$.

Proof. Induce on n (it's clear for $n=1$). There are two cases:
(a) f not irreducible over K. Write $f=g h$ in $K[x]$, with $\operatorname{deg}(g)=s$ and $\operatorname{deg}(h)=t$ both $<n$. By induction, there exists a splitting field
L_{0} / K for g, with $\left[L_{0}: K\right] \mid s!$; so $g=\mu_{g}\left(x-\beta_{1}\right) \cdots\left(x-\beta_{s}\right)$ with $\mu_{g} \in K$ and $L_{0}=K\left(\beta_{1}, \ldots, \beta_{s}\right)$.

Now consider h as a polynomial in $L_{0}[x]$, and apply induction to get a splitting field extension L / L_{0} for h with $\left[L: L_{0}\right] \mid t$!; that is, $h=\mu_{h}\left(x-\gamma_{1}\right) \cdots\left(x-\gamma_{t}\right)$ with $\mu_{h} \in L_{0}$ and $L=L_{0}\left(\gamma_{1}, \ldots, \gamma_{t}\right)=$ $K\left(\beta_{1}, \ldots, \beta_{s}, \gamma_{1}, \ldots, \gamma_{t}\right)$. Moreover, since $\mu_{g} \mu_{h}$ is the coefficient of x^{n} in f, it belongs to K. So we conclude (by I.C.1(ii)) that L / K is a splitting field extension for f, and that $[L: K]=\left[L: L_{0}\right]\left[L_{0}: K\right]$ divides $s!t!$ hence divides $(s+t)!=n!\left(\right.$ since $\left.\frac{(s+t)!}{s!t!}=\binom{s+t}{s} \in \mathbb{N}\right)$.
(b) firreducible over K. By I.C.4, there exists $K(\alpha) / K$ of degree n, with ${ }^{9} f(x)=(x-\alpha) g(x)$ in $K(\alpha)[x]$. Since $\operatorname{deg}(g)=n-1$, we apply induction to get a splitting field extension $L / K(\alpha)$ for g, with $[L: K(\alpha)] \mid(n-1)!$. Moreover, we get $g(x)=\mu\left(x-\beta_{1}\right) \cdots(x-$ $\left.\beta_{n-1}\right)$, with $\mu \in K(\alpha)$ and $\beta_{i} \in L$. Clearly $L=K\left(\alpha, \beta_{1}, \ldots, \beta_{n-1}\right)$ and $\mu \in K$. Hence L / K is a splitting field extension, and $[L: K]=$ $[L: K(\alpha)][K(\alpha): K]$ divides $(n-1)!n=n!$.
I.C.6. REMARK. So for an irreducible polynomial $f \in K[x]$, we see that the degree d of a splitting field extension satisfies $n \leq d \leq n$! and also divides n !. In particular, if $n=2$, then $d=2$, which reflects the fact that adjoining one root α of an irreducible quadratic has to give the other, by dividing $f(x) /(x-\alpha)$ in $K(\alpha)$.

Some examples of splitting fields.

I.C.7. EXAMPLE. Keeping K arbitrary, consider a quadratic polynomial $f(x)=x^{2}+a x+b \in K[x]$. We break the analysis of the splitting field into two cases.
$\underline{\operatorname{char}(K) \neq 2}$: We may write $f(x)=\left(x+\frac{a}{2}\right)^{2}-\frac{\mu}{4}$, where $\mu:=$ $a^{2}-4 b$, and replace f by $g(x):=x^{2}-\frac{\mu}{4}$. Clearly g splits over K (and the splitting field extension is trivial) iff μ has a square root in K. Otherwise, the splitting field extension has degree 2 , and is $K(\sqrt{\mu})$; that is, the quadratic formula tells us that the splitting field is obtained by adjoining a square root.

[^0]$\operatorname{char}(K)=2$: We can't divide by 2 here, so the quadratic formula doesn't work. For simplicity, let's take $K=\mathbb{Z}_{2}$, so that there are only four polynomials $x^{2}, x^{2}+x, x^{2}+1$, and $x^{2}+x+1$ to analyze, and the first three split over K. That leaves $f(x):=x^{2}+x+1$, which is irreducible (why?). Let L / K be its splitting field extension. This is of degree 2 , hence has 4 elements: $0,1, \alpha, \beta$.

At least one of α, β must be a root, say α. But then $(\alpha+1)^{2}+$ $(\alpha+1)+1=\alpha^{2}+1+\alpha+1+1=\alpha^{2}+\alpha+1=0 \Longrightarrow \alpha+1$ is a root; since it can't be 0,1 , or α, we have $\alpha+1=\beta$. So $f(x)=$ $(x-\alpha)(x-\beta)$, and we also get $\alpha+\beta=1=\alpha \beta$. To finish off the multiplication table, $\alpha^{2}=\alpha+1=\beta$ and $\beta^{2}=\beta+1=\alpha$.

This also reveals that L is not obtained from K by adjoining a square root: because α and β are not square roots of anything in $K=\{0,1\}$! (On the other hand, $0=(\alpha-1) f(\alpha)=\alpha^{3}-1 \Longrightarrow \alpha$ is a cube root of 1.)

Next we turn to several examples with $K=\mathbb{Q}$. You should make sure you can draw the tower diagrams of §I.A for each of them.
I.C.8. EXAMPLE. Let $f(x):=x^{p}-1 \in \mathbb{Q}[x]$. Of course, we have $f(x)=(x-1) \Phi_{p}(x)$, with $\Phi_{p}(x)=\sum_{j=0}^{p-1} x^{j}$ irreducible. Consider the field $L=\mathbb{Q}[y] /\left(\Phi_{p}(y)\right)$. If we write ζ for the image of y under the quotient map $K[y] \rightarrow L$, then $\zeta, \zeta^{2}, \ldots, \zeta^{p-1}$ are all roots of Φ_{p}, and distinct in $L .{ }^{10}$ So in $L[x]$, we have $f(x)=\prod_{j=0}^{p-1}\left(x-\zeta^{j}\right)$, and $L=K(\zeta)$ is the splitting field, of degree $p-1$ over K.

Of course, L embeds in \mathbb{C} as $\mathbb{Q}\left(\zeta_{p}\right)$, by sending $\zeta \mapsto \zeta_{p}$ (or more generally, to ζ_{p}^{k}, for any $k \in\{1, \ldots, p-1\}$). While it's easier to construct the splitting field inside \mathbb{C}, the more abstract approach allows us to embed it more easily into in other extensions of \mathbb{Q}.
${ }^{10}$ To see that each $\zeta^{k}, k \in \mathbb{Z}_{p}^{*}$, is a root, use $\zeta^{p}=1$ to work $\bmod p$ in exponents; and note that in $\Phi_{p}\left(\zeta^{k}\right)=1+\sum_{j=1}^{p-1} \zeta^{j k}$, the exponents run over all elements of \mathbb{Z}_{p}^{*} since multiplication by k is invertible there. That these roots are all distinct is just the fact that they are represented by different polynomials $\bmod \left(\Phi_{p}(x)\right)$.
I.C.9. Example. Put $f(x):=x^{p}-2 \in \mathbb{Q}[x]$. This is irreducible by Eisenstein and Gauss, and is the minimal polynomial of $2^{\frac{1}{p}} \in \mathbb{R}$ over Q; so we have $\left[\mathbb{Q}\left(2^{\frac{1}{p}}\right): \mathbb{Q}\right]=p$.

But the splitting field is bigger than $\mathbb{Q}\left(2^{\frac{1}{p}}\right)$. Given $\alpha \in \mathbb{C}$ any root of f, we have $\left(\alpha / 2^{\frac{1}{p}}\right)^{p}=\alpha^{p} / 2=1$; hence $\alpha=2^{\frac{1}{p}} \zeta_{p}^{j}$ for some $j \in$ $\{0,1, \ldots, p-1\}$, and this gives the list of roots of f in \mathbb{C}. Conclude that f splits over $L:=\mathbb{Q}\left(2^{\frac{1}{p}}, \zeta_{p}\right)$.

Since L contains the fields $\mathbb{Q}\left(\zeta_{p}\right)$ and $\mathbb{Q}\left(2^{\frac{1}{p}}\right)$, of respective degrees $p-1$ and p over \mathbb{Q}, by I.A. $9 d=[L: \mathbb{Q}]$ is divisible by both these degrees hence (as they are coprime) by $p(p-1)$. So $d \geq p(p-1)$. On the other hand, the minimal polynomial \tilde{f} of $2^{\frac{1}{p}}$ over $\mathbb{Q}\left(\zeta_{p}\right)$ must divide f, and so

$$
\left[L: \mathbb{Q}\left(\zeta_{p}\right)\right]=\left[\mathbb{Q}\left(\zeta_{p}\right)\left(2^{\frac{1}{p}}\right): \mathbb{Q}\left(\zeta_{p}\right)\right]=\operatorname{deg}(\tilde{f}) \leq \operatorname{deg}(f)=p
$$

whence by the Tower Law

$$
d=[L: \mathbf{Q}]=\left[L: \mathbf{Q}\left(\zeta_{p}\right)\right]\left[\mathbf{Q}\left(\zeta_{p}\right): \mathbf{Q}\right] \leq p(p-1)
$$

This shows that in fact $[L: \mathbb{Q}]=p(p-1)$.
I.C.10. Example. Take $f(x):=\left(x^{2}-5\right)\left(x^{2}-7\right) \in \mathbb{Q}[x]$. We first consider the intermediate extension $L_{0}:=\mathbb{Q}[y] /\left(y^{2}-5\right)$ (writing $\sqrt{5}$ for the image of y).

I claim that $x^{2}-7$ is irreducible over L_{0}. Otherwise, we would have

$$
7=(a+b \sqrt{5})^{2}=\left(a^{2}+5 b^{2}\right)+2 a b \sqrt{5}
$$

for some $a, b \in \mathbb{Q}$, which gives ${ }^{11} a b=0$ hence $a^{2}=7$ or $5 b^{2}=7$, which is impossible.

So the splitting field $L:=L_{0}[z] /\left(z^{2}-7\right)$ has degree 2 over L_{0}, and degree 4 over \mathbb{Q}.
I.C.11. EXAMPLE. Let's compare the splitting fields for $f(x):=$ $x^{6}-1$ and $g(x):=x^{6}+1$ over \mathbb{Q}.

[^1]Of course, f is reducible, and factors as $(x-1)(x+1)\left(x^{2}+x+\right.$ 1) $\left(x^{2}-x+1\right)$. If we write $L:=\mathbb{Q}[y] /\left(y^{2}+y+1\right)$ (with $\omega \in L$ the image of y), then $\omega^{2}+\omega+1=0 \Longrightarrow(-\omega)^{2}-(-\omega)+1=0$. So L is the splitting field (and identifies with $\mathbb{Q}\left(\zeta_{3}\right) \subset \mathbb{C}$).

Working in \mathbb{C}, g has roots $\mathbf{i}, \mathbf{i} \zeta_{3}, \mathbf{i} \zeta_{3}^{2},-\mathbf{i},-\mathbf{i} \zeta_{3}$, and $-\mathbf{i} \zeta_{3}^{2}$. Since $\mathbb{Q}\left(\zeta_{3}\right) \neq \mathbb{Q}(\mathbf{i})$, the splitting field M is a (proper) quadratic extension of L, of degree 4 over \mathbb{Q}.

Finally, here are a couple more examples over finite fields.
I.C.12. EXAMPLE. Let L be a splitting field for the irreducible polynomial $f(x):=x^{3}-x+1 \in \mathbb{Z}_{3}[x]$, with $\alpha \in L$ a root. One checks that $\alpha+1$ and $\alpha-1$ are also roots. Hence $L=\mathbb{Z}_{3}(\alpha)$ and $\left[L: \mathbb{Z}_{3}\right]=3$.
I.C.13. EXAMPLE. What if we take $f(x):=x^{3}+x+1 \in \mathbb{Z}_{2}[x]$? I claim that, as in I.C.12, the degree-3 extension $L:=\mathbb{Z}_{2}[y] /(f(y))$ is already a splitting field. Writing α for the image of y, over L we have

$$
f(x)=(x-\alpha)\left(x^{2}+a x+b\right)=x^{3}+(a-\alpha) x^{2}+(b-a \alpha) x-b \alpha
$$

hence $b=-\frac{1}{\alpha}=1+\alpha^{2}$ and $a=\alpha$. It follows that

$$
\left(\alpha^{2}\right)^{2}+a\left(\alpha^{2}\right)+b=\alpha\left(\alpha^{3}\right)+\alpha^{3}+\alpha^{2}+1=\alpha(\alpha+1)+\alpha+1+\alpha^{2}+1=0,
$$

so that α^{2} is also a root of f, proving the claim.

Embeddings of simple extensions.

I.C.14. Proposition. Given a simple algebraic extension $K(\alpha) / K$, with $m_{\alpha} \in K[x]$ the minimal polynomial of α over K; and an embedding ı: $K \hookrightarrow L$, with an element $\beta \in L$. Write $\underline{\imath}: K[x] \hookrightarrow L[x]$ for the resulting homomorphism. ${ }^{12}$ Then the following are equivalent:
(i) β is a root of $\underline{\imath}\left(m_{\alpha}\right) \in L[x]$; and
(ii) there exists $\jmath: K(\alpha) \hookrightarrow L$ with $\jmath(\alpha)=\beta$ and $\left.\jmath\right|_{K}=\imath$.

Moreover, in this case \jmath is unique.

[^2]Proof. First we get uniqueness out of the way: suppose \jmath and \jmath^{\prime} are two such "extensions of \imath ", and consider

$$
K \subseteq \mathbb{F}:=\left\{\gamma \in K(\alpha) \mid \jmath(\gamma)=\jmath^{\prime}(\gamma)\right\} \subseteq K(\alpha)
$$

Clearly $\alpha \in \mathbb{F}$ since $\jmath(\alpha)=\beta=\jmath^{\prime}(\alpha)$, and so $\mathbb{F}=K(\alpha)$. Turning to the equivalence:

$$
(\text { ii }) \Longrightarrow(\mathrm{i}): \underline{\imath}\left(m_{\alpha}\right)(\beta)=\underline{\jmath}\left(m_{\alpha}\right)(\jmath(\alpha))=\jmath\left(m_{\alpha}(\alpha)\right)=\jmath(0)=0
$$

(i) \Longrightarrow (ii): Write m_{β} for the minimal polynomial of β over $K^{\prime}:=$ $\imath(K)$. Since $\imath: K \rightarrow K^{\prime}$ is an isomorphism, $\underline{\imath}\left(m_{\alpha}\right) \in K^{\prime}[x]$ is irreducible; and so by (i) we have $\underline{\imath}\left(m_{\alpha}\right)=m_{\beta}$. Now consider the diagram

Omitting the dotted arrows for the moment, note that the long composition from K to L is just \imath. Since $\operatorname{ker}\left(v^{\prime} \circ \underline{\imath}\right)=\underline{\imath}^{-1}\left(\operatorname{ker}\left(v^{\prime}\right)\right)=$ $\underline{\underline{L}}^{-1}\left(\left(m_{\beta}\right)\right)=\left(m_{\alpha}\right)$, the Fundamental Theorem gives $\tilde{\imath}$ as shown (so that the diagram commutes). We then just define $\jmath:=\overline{\operatorname{ev}}_{\beta} \circ \tilde{\imath} \circ \overline{\mathrm{ev}}_{\alpha}^{-1}$; obviously this sends $k \mapsto \imath(k)$, and it sends $\alpha \mapsto \beta$ because $\tilde{\imath}$ sends $\bar{x} \mapsto \bar{x}$.
I.C.16. Corollary. (a) Let $K(\alpha) / K$ be algebraic, and $\tau: K \hookrightarrow L$ an embedding, such that $\imath\left(m_{\alpha}\right)$ has r distinct roots in L. Then there are exactly r distinct embeddings $\jmath: K(\alpha) \hookrightarrow L$ with $\left.\jmath\right|_{K}=\imath$.
(b) Let $K(\alpha) / K$ and $K^{\prime}\left(\alpha^{\prime}\right) / K^{\prime}$ be algebraic, with $1: K \xlongequal{\cong} K^{\prime}$. Then $m_{\alpha^{\prime}}=\imath\left(m_{\alpha}\right) \Longleftrightarrow \exists \jmath: K(\alpha) \xlongequal{\cong} K^{\prime}\left(\alpha^{\prime}\right)$ with $\jmath(\alpha)=\alpha^{\prime}$ and $\left.\jmath\right|_{K}=\imath$ (in which case f is unique).

Proof. Both follow directly from I.C.14. (For (b), take $L:=K^{\prime}\left(\alpha^{\prime}\right)$ and $\beta:=\alpha$.)
I.C.17. Examples. (A) Let $K=\mathbb{Q}, K(\theta)=\mathbb{Q}[x] /\left(x^{3}-3 x-1\right)$, and $L=\mathbb{R}$. Recall from I.A. 2 that 3 embeddings $\varphi_{i}: \mathbb{Q}(\theta) \hookrightarrow \mathbb{R}$ were obtained by sending $\theta \mapsto \theta_{i}$, with $\left\{\theta_{i}\right\}$ the three roots of $x^{3}-3 x-1$ in \mathbb{R}. By I.C.16(a), these are all of the real embeddings; composing them with the inclusion $\mathbb{R} \hookrightarrow \mathbb{C}$ gives the only embeddings of $\mathbb{Q}(\theta)$ in \mathbb{C} (why?).
(B) If we change the polynomial to $x^{3}-2$ (cf. I.A.3), then there is only one root in \mathbb{R}, but two more in \mathbb{C}. In this case, by the Corollary there is exactly one embedding $\mathbb{Q}(\theta) \hookrightarrow \mathbb{R}$, but two additional (conjugate) embeddings $\mathbb{Q}(\theta) \hookrightarrow \mathbb{C}$.
(C) What about, say, $K=\mathbb{Z}_{p}(y)$ and $K(\alpha):=\mathbb{Z}_{p}(y)[x] /\left(x^{p}-y\right)$? As we will see below, $x^{p}-y$ is irreducible in $\mathbb{Z}_{p}(y)[x]$. Moreover, if β is a root in some extension $\left(\mathbb{Z}_{p}(y) \stackrel{l}{\hookrightarrow}\right) L$, then $\beta^{p}=y$ and $(x-\beta)^{p}=x^{p}-\beta^{p}=x^{p}-y$, making β is the only root in L. (The "freshman's dream" is obviously crucial here.) So there is only one embedding $K(\alpha) \hookrightarrow L$ extending 1 .

Uniqueness and automorphisms of splitting fields. First, we prove a general result which appears to have nothing to do with either of these.
I.C.18. Theorem. Given $f \in K[x]$ of degree n, with splitting field extension L / K of degree $d:=[L: K]$. Let $\imath: K \hookrightarrow L^{\prime}$ be an embedding. Then there exists $\jmath: L \hookrightarrow L^{\prime}$ extending ${ }^{13}{ }_{l}$ if and only if $\imath(f)$ splits over L^{\prime}. In this case, the number of possible choices for \jmath is $\leq d$, with equality if $\imath(f)$ has n distinct roots in L^{\prime}.

Proof. We may assume f monic, with $f(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ in $L[x]$. If \jmath exists, then $\imath(f)=\jmath(f)=\prod_{i=1}^{n}\left(x-\jmath\left(\alpha_{i}\right)\right)$ splits over L^{\prime}.
For the converse direction and the count of possible \jmath 's, we induce on d. We need to show that if f splits over L^{\prime}, we can embed its splitting field into L^{\prime} in $\leq d$ different ways, extending 2 . (The case $d=1$ means that $L=K$, so the extension is the trivial one and there is one way to do it.)
${ }^{13}$ That is, $\left.\jmath\right|_{K}=\imath$.

So assume $d>1$. We may then assume $\alpha_{1} \notin K$; let $m_{\alpha_{1}}$ be its minimal polynomial over K, and write $f=m_{\alpha_{1}} g$. In $L[x]$, for some ordering of the roots, we have $m_{\alpha_{1}}(x)=\prod_{i=1}^{r}\left(x-\alpha_{i}\right)$. By assumption, $\imath\left(m_{\alpha_{1}}\right) \imath(g)=\imath(f)$ splits over L^{\prime}, so that (in $\left.L^{\prime}[x]\right) \imath\left(m_{\alpha_{1}}\right)(x)=$ $\prod_{i=1}^{r}\left(x-\beta_{i}\right)$ and $\imath(f)(x)=\prod_{i=1}^{n}\left(x-\beta_{i}\right)$ for some $\beta_{i} \in L^{\prime}$. Notice that $K\left(\alpha_{1}\right) / K$ is simple, and $\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ are roots of $\imath\left(m_{\alpha_{1}}\right)$ in L^{\prime}, so that I.C. 14 gives for each $i \in\{1, \ldots, r\}$ a unique $t_{1}: K\left(\alpha_{1}\right) \hookrightarrow L^{\prime}$ (with $\left.\imath_{1}\right|_{K}=\imath$) sending $\alpha_{1} \mapsto \beta_{i}$. The number of possible choices here is the number of distinct β_{i} with $i \in\{1, \ldots, r\}$.

Setting $K_{1}:=K\left(\alpha_{1}\right)$ and $f_{1}:=g \in K_{1}[x]$, and choosing an ${ }_{1}: K_{1} \hookrightarrow L^{\prime}$, we note that f_{1} splits over L^{\prime}, and L / K_{1} is a splitting field extension for f_{1}, of degree $d_{1}:=\left[L: K\left(\alpha_{1}\right)\right]=\frac{[L: K]}{\left[K\left(\alpha_{1}\right): K\right]}=\frac{d}{r}<d$. By the inductive hypothesis, there exists a $\jmath: L \hookrightarrow L^{\prime}$ extending \imath_{1} hence 1 . The number of possible choices is $\leq d_{1}$, with equality iff the $\beta_{r+1}, \ldots, \beta_{n}$ are distinct.

Conclude that if $\beta_{1}, \ldots, \beta_{n}$ are distinct, then there are r choices of ${ }_{1}$, and for each of those, $\frac{d}{r}$ choices of \jmath extending it, for a total of d choices overall. Clearly in general this is the upper bound.
I.C.19. Corollary. Given $f \in K[x]$, an isomorphism $\imath: K \xlongequal{\cong} K^{\prime}$, and L / K resp. L^{\prime} / K^{\prime} splitting field extensions for f resp. $\imath(f)$, there exists $a_{j}: L \xrightarrow{\rightrightarrows} L^{\prime}$ extending \imath (with the same number of choices as in I.C.18).

Proof. Applying I.C. 18 to $\tau: K \xlongequal{\cong} K^{\prime} \hookrightarrow L^{\prime}$ yields $\jmath: L \hookrightarrow L^{\prime}$ extending 2 . We need to show that \jmath is onto. Assume f monic.

We have $f(x)=\lambda \prod_{i=1}^{n}\left(x-\alpha_{i}\right)$ in $L[x]$, hence $\imath(f)=\imath(\lambda) \prod_{i=1}^{n}(x-$ $\left.\jmath\left(\alpha_{i}\right)\right)$ in $L^{\prime}[x]$. Since L^{\prime} is a splitting field for $\imath(f)$, we have $L^{\prime}=$ $K^{\prime}\left(\jmath\left(\alpha_{1}\right), \ldots, \jmath\left(\alpha_{n}\right)\right) \subset \jmath(L)$. So \jmath is indeed surjective.
I.C.20. REmark. In spite of the non-uniqueness of \jmath in the last Theorem and Corollary, the latter provides an affirmative answer to our uniqueness question (3) from the beginning of the section. If we take $K^{\prime}=K$ and $\imath=\mathrm{id}_{K}$ in I.C.19, it says that any two splitting field extensions are isomorphic over K (that is, the isomorphism even restricts to the identity on K).
I.C.21. Corollary. Let $f \in K[x]$ be irreducible, L / K a splitting field extension for f.
(i) Given $\alpha, \beta \in L$ two roots of f, there exists an ${ }^{14}$ automorphism $\sigma: L \stackrel{\cong}{\rightrightarrows} L$ with $\sigma(\alpha)=\beta$ and $\left.\sigma\right|_{K}=\operatorname{id}_{K}$.
(ii) There are at most $[L: K]$ automorphisms of L over K; and there are exactly this number if f has $\operatorname{deg}(f)$ distinct roots.

Proof. For (ii), just apply I.C. 19 with $K^{\prime}=K, \imath=\mathrm{id}_{K}$ and $L^{\prime}=L$.
To see (i), apply I.C.16(b) to produce $\tau: K(\alpha) \xlongequal{\cong} K(\beta)$ (with $\left.\tau\right|_{K}=$ id_{K}) sending $\alpha \mapsto \beta$. But then $L / K(\alpha)$ and $L / K(\beta)$ are splitting field extensions for f, to which we apply I.C. 19 (with $\tau=\tau$) to get the result.

[^3]
[^0]: ${ }^{9}$ That $(x-\alpha) \mid f(x)$ in $K(\alpha)[x]$ is [Algebra I, III.G.16].

[^1]: ${ }^{11}$ Why? Think in vector space terms: $1, \sqrt{5}$ is a basis of L_{0} over \mathbb{Q}.

[^2]: ${ }^{12}$ As you have seen, we usually just write \imath for this, but we need the notational distinction here to make the proof intelligible.

[^3]: ${ }^{14}$ Not necessarily unique, unless $L=K(\alpha)$.

