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I.C. Splitting fields

Let f ∈ Q[x] be a monic polynomial of degree n. We know that
f has a unique factorization into irreducibles in Q[x], f = f1 · · · fk.
In C[x], it splits completely into linear factors, f (x) = ∏n

i=1(x− αi),
by the Fundamental Theorem of Algebra. But then this also holds
over L := Q(α1, . . . , αn) ⊂ C, and it can’t hold for any smaller field.
Several questions arise:

(1) What is the degree d := [L:Q]? If f is irreducible over Q (and
n > 2), this need not be n, which is only the lower bound. For
x3 − 1 it is true that d = 3, but for x3 − 2 we have d = 6, since
3
√

2ζ3 /∈ Q( 3
√

2).
(2) For general K, and f ∈ K[x], must there exist an L over which f

splits into linear factors? For instance, maybe K = Fpk is a finite
field, or maybe it is the “function field of an algebraic curve”
(viz., C(x)[y]/(F(x, y))); in either case, we can’t embed K into
C as we did above.

(3) Is a minimal field extension L/K such that f ∈ K[x] splits in L[x]
unique? One could both worry about different embeddings of
K into L, or about whether L itself is unique. More precisely, the
question is: given ı : K ↪→ L and ı′ : K ↪→ L′ extensions of this
type, do we have an isomorphism ψ : L→ L′ with ψ ◦ ı = ı′?

As we shall see below, (2) and (3) have affirmative answers. (Even
for Q, we’ll end up getting around the use of C above.) For (1), we
will say more later. First, let’s give a rigorous

I.C.1. DEFINITION. Let K be a field, f ∈ K[x] a polynomial, and
L/K an extension.

(i) f splits over L if we can write f (x) = c ∏n
i=1(x − αi) with

αi ∈ L (and c ∈ K).
(ii) L(/K) is a splitting field (extension) for f if f splits over L

(as c ∏i(x− αi)) and L = K(α1, . . . , αn).
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I.C.2. PROPOSITION. If f splits over L as above, L = K(α1, . . . , αn) is
equivalent to minimality of L: the nonexistence of L′/K, with L ) L′ ⊃ K,
over which f splits.

PROOF. Suppose L is minimal; properness of the containment
L ⊃ K(α1, . . . , αn) would yield a contradiction (take L′ to be the
smaller field), and so it’s an equality.

Conversely, suppose L = K(α1, . . . , αn) ⊃ L′ ⊃ K, with f split
over L′: i.e., f = c ∏i(x − α′i), with α′i ∈ L′. But these will also be n
roots (possibly with multiplicity) of f in L, and the roots of f (and
their multiplicities) are unique because L[x] is a UFD. They generate
L over K by assumption, which forces L′ = L. �

I.C.3. REMARK. Clearly, if L/K is a splitting field extension, then
by the Tower Law L/K is finite, a fortiori algebraic.

Existence of splitting fields.

Since there is now no C in sight, let’s remind ourselves of how
we can algebraically construct extensions containing a root “out of
thin air”.

I.C.4. LEMMA. If f ∈ K[x] is irreducible of degree n, then there exists
a simple extension K(α)/K with [K(α):K] = n and f (α) = 0.

PROOF. We have the natural field extension

ı : K ↪→ L := K[x]/( f (x)).

Let α ∈ L denote the image of x under the quotient map ν : K[x] � L;
then L = K(α), and f (α) = f (ν(x)) = ν( f (x)) = 0. Hence f ∈ (mα),
and irreducibility of f then gives f = kmα (k ∈ K). Conclude that
[L:K] = deg(mα) = deg( f ) = n. �

I.C.5. THEOREM. Given f ∈ K[x] of degree n (not necessarily irre-
ducible), there exists a splitting field extension L/K with [L:K]

∣∣n!.

PROOF. Induce on n (it’s clear for n = 1). There are two cases:

(a) f not irreducible over K. Write f = gh in K[x], with deg(g) = s
and deg(h) = t both < n. By induction, there exists a splitting field
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L0/K for g, with [L0:K]
∣∣s!; so g = µg(x− β1) · · · (x− βs) with µg ∈ K

and L0 = K(β1, . . . , βs).
Now consider h as a polynomial in L0[x], and apply induction

to get a splitting field extension L/L0 for h with [L:L0]
∣∣t!; that is,

h = µh(x − γ1) · · · (x − γt) with µh ∈ L0 and L = L0(γ1, . . . , γt) =

K(β1, . . . , βs, γ1, . . . , γt). Moreover, since µgµh is the coefficient of
xn in f , it belongs to K. So we conclude (by I.C.1(ii)) that L/K is a
splitting field extension for f , and that [L:K] = [L:L0][L0:K] divides
s!t! hence divides (s + t)! = n! (since (s+t)!

s!t! = (s+t
s ) ∈N).

(b) f irreducible over K. By I.C.4, there exists K(α)/K of degree
n, with9 f (x) = (x − α)g(x) in K(α)[x]. Since deg(g) = n − 1,
we apply induction to get a splitting field extension L/K(α) for g,
with [L:K(α)]

∣∣(n− 1)!. Moreover, we get g(x) = µ(x − β1) · · · (x −
βn−1), with µ ∈ K(α) and βi ∈ L. Clearly L = K(α, β1, . . . , βn−1)

and µ ∈ K. Hence L/K is a splitting field extension, and [L:K] =
[L:K(α)][K(α):K] divides (n− 1)!n = n!. �

I.C.6. REMARK. So for an irreducible polynomial f ∈ K[x], we
see that the degree d of a splitting field extension satisfies n ≤ d ≤ n!
and also divides n!. In particular, if n = 2, then d = 2, which reflects
the fact that adjoining one root α of an irreducible quadratic has to
give the other, by dividing f (x)/(x− α) in K(α).

Some examples of splitting fields.

I.C.7. EXAMPLE. Keeping K arbitrary, consider a quadratic poly-
nomial f (x) = x2 + ax + b ∈ K[x]. We break the analysis of the
splitting field into two cases.

char(K) 6= 2: We may write f (x) = (x + a
2)

2 − µ
4 , where µ :=

a2 − 4b, and replace f by g(x) := x2 − µ
4 . Clearly g splits over K

(and the splitting field extension is trivial) iff µ has a square root
in K. Otherwise, the splitting field extension has degree 2, and is
K(
√

µ); that is, the quadratic formula tells us that the splitting field
is obtained by adjoining a square root.

9That (x− α) | f (x) in K(α)[x] is [Algebra I, III.G.16].
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char(K) = 2: We can’t divide by 2 here, so the quadratic formula
doesn’t work. For simplicity, let’s take K = Z2, so that there are only
four polynomials x2, x2 + x, x2 + 1, and x2 + x + 1 to analyze, and
the first three split over K. That leaves f (x) := x2 + x + 1, which is
irreducible (why?). Let L/K be its splitting field extension. This is of
degree 2, hence has 4 elements: 0, 1, α, β.

At least one of α, β must be a root, say α. But then (α + 1)2 +

(α + 1) + 1 = α2 + 1 + α + 1 + 1 = α2 + α + 1 = 0 =⇒ α + 1 is
a root; since it can’t be 0, 1, or α, we have α + 1 = β. So f (x) =

(x − α)(x − β), and we also get α + β = 1 = αβ. To finish off the
multiplication table, α2 = α + 1 = β and β2 = β + 1 = α.

This also reveals that L is not obtained from K by adjoining a
square root: because α and β are not square roots of anything in
K = {0, 1}! (On the other hand, 0 = (α− 1) f (α) = α3 − 1 =⇒ α is
a cube root of 1.)

Next we turn to several examples with K = Q. You should make
sure you can draw the tower diagrams of §I.A for each of them.

I.C.8. EXAMPLE. Let f (x) := xp − 1 ∈ Q[x]. Of course, we have
f (x) = (x − 1)Φp(x), with Φp(x) = ∑

p−1
j=0 xj irreducible. Consider

the field L = Q[y]/(Φp(y)). If we write ζ for the image of y under
the quotient map K[y] � L, then ζ, ζ2, . . . , ζ p−1 are all roots of Φp,
and distinct in L.10 So in L[x], we have f (x) = ∏

p−1
j=0 (x − ζ j), and

L = K(ζ) is the splitting field, of degree p− 1 over K.
Of course, L embeds in C as Q(ζp), by sending ζ 7→ ζp (or more

generally, to ζk
p, for any k ∈ {1, . . . , p− 1}). While it’s easier to con-

struct the splitting field inside C, the more abstract approach allows
us to embed it more easily into in other extensions of Q.

10To see that each ζk, k ∈ Z∗p, is a root, use ζ p = 1 to work mod p in exponents;

and note that in Φp(ζk) = 1 + ∑
p−1
j=1 ζ jk, the exponents run over all elements of Z∗p

since multiplication by k is invertible there. That these roots are all distinct is just
the fact that they are represented by different polynomials mod (Φp(x)).
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I.C.9. EXAMPLE. Put f (x) := xp − 2 ∈ Q[x]. This is irreducible

by Eisenstein and Gauss, and is the minimal polynomial of 2
1
p ∈ R

over Q; so we have [Q(2
1
p ):Q] = p.

But the splitting field is bigger than Q(2
1
p ). Given α ∈ C any root

of f , we have (α/2
1
p )p = αp/2 = 1; hence α = 2

1
p ζ

j
p for some j ∈

{0, 1, . . . , p− 1}, and this gives the list of roots of f in C. Conclude

that f splits over L := Q(2
1
p , ζp).

Since L contains the fields Q(ζp) and Q(2
1
p ), of respective degrees

p − 1 and p over Q, by I.A.9 d = [L:Q] is divisible by both these
degrees hence (as they are coprime) by p(p − 1). So d ≥ p(p − 1).

On the other hand, the minimal polynomial f̃ of 2
1
p over Q(ζp) must

divide f , and so

[L:Q(ζp)] = [Q(ζp)(2
1
p ):Q(ζp)] = deg( f̃ ) ≤ deg( f ) = p

whence by the Tower Law

d = [L:Q] = [L:Q(ζp)][Q(ζp):Q] ≤ p(p− 1).

This shows that in fact [L:Q] = p(p− 1).

I.C.10. EXAMPLE. Take f (x) := (x2 − 5)(x2 − 7) ∈ Q[x]. We first
consider the intermediate extension L0 := Q[y]/(y2− 5) (writing

√
5

for the image of y).
I claim that x2 − 7 is irreducible over L0. Otherwise, we would

have
7 = (a + b

√
5)2 = (a2 + 5b2) + 2ab

√
5

for some a, b ∈ Q, which gives11 ab = 0 hence a2 = 7 or 5b2 = 7,
which is impossible.

So the splitting field L := L0[z]/(z2 − 7) has degree 2 over L0,
and degree 4 over Q.

I.C.11. EXAMPLE. Let’s compare the splitting fields for f (x) :=
x6 − 1 and g(x) := x6 + 1 over Q.

11Why? Think in vector space terms: 1,
√

5 is a basis of L0 over Q.
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Of course, f is reducible, and factors as (x − 1)(x + 1)(x2 + x +

1)(x2 − x + 1). If we write L := Q[y]/(y2 + y + 1) (with ω ∈ L the
image of y), then ω2 + ω + 1 = 0 =⇒ (−ω)2 − (−ω) + 1 = 0. So L
is the splitting field (and identifies with Q(ζ3) ⊂ C).

Working in C, g has roots i, iζ3, iζ2
3, −i, −iζ3, and −iζ2

3. Since
Q(ζ3) 6= Q(i), the splitting field M is a (proper) quadratic extension
of L, of degree 4 over Q.

Finally, here are a couple more examples over finite fields.

I.C.12. EXAMPLE. Let L be a splitting field for the irreducible
polynomial f (x) := x3 − x + 1 ∈ Z3[x], with α ∈ L a root. One
checks that α + 1 and α − 1 are also roots. Hence L = Z3(α) and
[L:Z3] = 3.

I.C.13. EXAMPLE. What if we take f (x) := x3 + x + 1 ∈ Z2[x]? I
claim that, as in I.C.12, the degree-3 extension L := Z2[y]/( f (y)) is
already a splitting field. Writing α for the image of y, over L we have

f (x) = (x− α)(x2 + ax + b) = x3 + (a− α)x2 + (b− aα)x− bα

hence b = − 1
α = 1 + α2 and a = α. It follows that

(α2)2 + a(α2) + b = α(α3) + α3 + α2 + 1 = α(α + 1) + α + 1 + α2 + 1 = 0,

so that α2 is also a root of f , proving the claim.

Embeddings of simple extensions.

I.C.14. PROPOSITION. Given a simple algebraic extension K(α)/K,
with mα ∈ K[x] the minimal polynomial of α over K; and an embedding
ı : K ↪→ L, with an element β ∈ L. Write ı : K[x] ↪→ L[x] for the resulting
homomorphism.12 Then the following are equivalent:

(i) β is a root of ı(mα) ∈ L[x]; and
(ii) there exists  : K(α) ↪→ L with (α) = β and |K = ı.

Moreover, in this case  is unique.

12As you have seen, we usually just write ı for this, but we need the notational
distinction here to make the proof intelligible.
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PROOF. First we get uniqueness out of the way: suppose  and ′

are two such “extensions of ı”, and consider

K ⊆ F := {γ ∈ K(α) | (γ) = ′(γ)} ⊆ K(α).

Clearly α ∈ F since (α) = β = ′(α), and so F = K(α). Turning to
the equivalence:

(ii) =⇒ (i): ı(mα)(β) = (mα)((α)) = (mα(α)) = (0) = 0.

(i) =⇒ (ii): Write mβ for the minimal polynomial of β over K′ :=
ı(K). Since ı : K → K′ is an isomorphism, ı(mα) ∈ K′[x] is irreducible;
and so by (i) we have ı(mα) = mβ. Now consider the diagram

(I.C.15) K �
� // K[x]

ı ∼=
��

evα

''
ν // // K[x]/(mα)

evα

∼=
//

ı̃ ∼=
��

K(α)

∼=
��

K′[x] ν′ // //

evβ

77
K′[x]/(mβ)

evβ

∼=
// K′(β) �

� // L.

Omitting the dotted arrows for the moment, note that the long com-
position from K to L is just ı. Since ker(ν′ ◦ ı) = ı−1(ker(ν′)) =

ı−1((mβ)) = (mα), the Fundamental Theorem gives ı̃ as shown (so
that the diagram commutes). We then just define  := evβ ◦ ı̃ ◦ ev−1

α ;
obviously this sends k 7→ ı(k), and it sends α 7→ β because ı̃ sends
x̄ 7→ x̄. �

I.C.16. COROLLARY. (a) Let K(α)/K be algebraic, and ı : K ↪→ L an
embedding, such that ı(mα) has r distinct roots in L. Then there are exactly
r distinct embeddings  : K(α) ↪→ L with |K = ı.

(b) Let K(α)/K and K′(α′)/K′ be algebraic, with ı : K
∼=→ K′. Then

mα′ = ı(mα) ⇐⇒ ∃  : K(α)
∼=→ K′(α′) with (α) = α′ and |K = ı (in

which case  is unique).

PROOF. Both follow directly from I.C.14. (For (b), take L := K′(α′)
and β := α.) �
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I.C.17. EXAMPLES. (A) Let K = Q, K(θ) = Q[x]/(x3 − 3x − 1),
and L = R. Recall from I.A.2 that 3 embeddings ϕi : Q(θ) ↪→ R were
obtained by sending θ 7→ θi, with {θi} the three roots of x3 − 3x− 1
in R. By I.C.16(a), these are all of the real embeddings; composing
them with the inclusion R ↪→ C gives the only embeddings of Q(θ)

in C (why?).

(B) If we change the polynomial to x3− 2 (cf. I.A.3), then there is only
one root in R, but two more in C. In this case, by the Corollary there
is exactly one embedding Q(θ) ↪→ R, but two additional (conjugate)
embeddings Q(θ) ↪→ C.

(C) What about, say, K = Zp(y) and K(α) := Zp(y)[x]/(xp − y)?
As we will see below, xp − y is irreducible in Zp(y)[x]. Moreover,

if β is a root in some extension (Zp(y)
ı
↪→) L, then βp = y and

(x − β)p = xp − βp = xp − y, making β is the only root in L. (The
“freshman’s dream” is obviously crucial here.) So there is only one
embedding K(α) ↪→ L extending ı.

Uniqueness and automorphisms of splitting fields. First, we
prove a general result which appears to have nothing to do with
either of these.

I.C.18. THEOREM. Given f ∈ K[x] of degree n, with splitting field
extension L/K of degree d := [L:K]. Let ı : K ↪→ L′ be an embedding.
Then there exists  : L ↪→ L′ extending13 ı if and only if ı( f ) splits over L′.
In this case, the number of possible choices for  is≤ d, with equality if ı( f )
has n distinct roots in L′.

PROOF. We may assume f monic, with f (x)=∏n
i=1(x−αi) in L[x].

If  exists, then ı( f ) = ( f ) = ∏n
i=1(x− (αi)) splits over L′.

For the converse direction and the count of possible ’s, we in-
duce on d. We need to show that if f splits over L′, we can embed
its splitting field into L′ in ≤ d different ways, extending ı. (The case
d = 1 means that L = K, so the extension is the trivial one and there
is one way to do it.)

13That is, |K = ı.
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So assume d > 1. We may then assume α1 /∈ K; let mα1 be its
minimal polynomial over K, and write f = mα1 g. In L[x], for some
ordering of the roots, we have mα1(x) = ∏r

i=1(x − αi). By assump-
tion, ı(mα1)ı(g) = ı( f ) splits over L′, so that (in L′[x]) ı(mα1)(x) =

∏r
i=1(x − βi) and ı( f )(x) = ∏n

i=1(x − βi) for some βi ∈ L′. Notice
that K(α1)/K is simple, and {β1, . . . , βr} are roots of ı(mα1) in L′, so
that I.C.14 gives for each i ∈ {1, . . . , r} a unique ı1 : K(α1) ↪→ L′ (with
ı1|K = ı) sending α1 7→ βi. The number of possible choices here is
the number of distinct βi with i ∈ {1, . . . , r}.

Setting K1 := K(α1) and f1 := g ∈ K1[x], and choosing an
ı1 : K1 ↪→ L′, we note that f1 splits over L′, and L/K1 is a splitting
field extension for f1, of degree d1 := [L:K(α1)] =

[L:K]
[K(α1):K]

= d
r < d.

By the inductive hypothesis, there exists a  : L ↪→ L′ extending ı1
hence ı. The number of possible choices is ≤ d1, with equality iff the
βr+1, . . . , βn are distinct.

Conclude that if β1, . . . , βn are distinct, then there are r choices of
ı1, and for each of those, d

r choices of  extending it, for a total of d
choices overall. Clearly in general this is the upper bound. �

I.C.19. COROLLARY. Given f ∈ K[x], an isomorphism ı : K
∼=→ K′,

and L/K resp. L′/K′ splitting field extensions for f resp. ı( f ), there exists
a  : L

∼=→ L′ extending ı (with the same number of choices as in I.C.18).

PROOF. Applying I.C.18 to ı : K
∼=→ K′ ↪→ L′ yields  : L ↪→ L′

extending ı. We need to show that  is onto. Assume f monic.
We have f (x) = λ ∏n

i=1(x− αi) in L[x], hence ı( f ) = ı(λ)∏n
i=1(x−

(αi)) in L′[x]. Since L′ is a splitting field for ı( f ), we have L′ =
K′((α1), . . . , (αn)) ⊂ (L). So  is indeed surjective. �

I.C.20. REMARK. In spite of the non-uniqueness of  in the last
Theorem and Corollary, the latter provides an affirmative answer to
our uniqueness question (3) from the beginning of the section. If
we take K′ = K and ı = idK in I.C.19, it says that any two splitting
field extensions are isomorphic over K (that is, the isomorphism even
restricts to the identity on K).
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I.C.21. COROLLARY. Let f ∈ K[x] be irreducible, L/K a splitting field
extension for f .

(i) Given α, β ∈ L two roots of f , there exists an14 automorphism
σ : L

∼=→ L with σ(α) = β and σ|K = idK.
(ii) There are at most [L:K] automorphisms of L over K; and there are

exactly this number if f has deg( f ) distinct roots.

PROOF. For (ii), just apply I.C.19 with K′ = K, ı = idK and L′ = L.

To see (i), apply I.C.16(b) to produce τ : K(α)
∼=→ K(β) (with τ|K =

idK) sending α 7→ β. But then L/K(α) and L/K(β) are splitting field
extensions for f , to which we apply I.C.19 (with ı = τ) to get the
result. �

14Not necessarily unique, unless L = K(α).


