I. GALOIS THEORY

I.C. Splitting fields

Let $f \in \mathbb{Q}[x]$ be a monic polynomial of degree *n*. We know that *f* has a unique factorization into irreducibles in $\mathbb{Q}[x]$, $f = f_1 \cdots f_k$. In $\mathbb{C}[x]$, it splits completely into linear factors, $f(x) = \prod_{i=1}^{n} (x - \alpha_i)$, by the Fundamental Theorem of Algebra. But then this also holds over $L := \mathbb{Q}(\alpha_1, \dots, \alpha_n) \subset \mathbb{C}$, and it can't hold for any smaller field. Several questions arise:

- (1) What is the degree $d := [L:\mathbb{Q}]$? If f is irreducible over \mathbb{Q} (and n > 2), this need not be n, which is only the lower bound. For $x^3 1$ it is true that d = 3, but for $x^3 2$ we have d = 6, since $\sqrt[3]{2}\zeta_3 \notin \mathbb{Q}(\sqrt[3]{2})$.
- (2) For general K, and f ∈ K[x], must there exist an L over which f splits into linear factors? For instance, maybe K = F_{pk} is a finite field, or maybe it is the "function field of an algebraic curve" (viz., C(x)[y]/(F(x,y))); in either case, we can't embed K into C as we did above.
- (3) Is a minimal field extension L/K such that f ∈ K[x] splits in L[x] unique? One could both worry about different embeddings of K into L, or about whether L itself is unique. More precisely, the question is: given ι: K → L and ι': K → L' extensions of this type, do we have an isomorphism ψ: L → L' with ψ ∘ ι = ι'?

As we shall see below, (2) and (3) have affirmative answers. (Even for \mathbb{Q} , we'll end up getting around the use of \mathbb{C} above.) For (1), we will say more later. First, let's give a rigorous

I.C.1. DEFINITION. Let *K* be a field, $f \in K[x]$ a polynomial, and L/K an extension.

(i) *f* splits over *L* if we can write $f(x) = c \prod_{i=1}^{n} (x - \alpha_i)$ with $\alpha_i \in L$ (and $c \in K$).

(ii) L(/K) is a **splitting field (extension) for** f if f splits over L (as $c \prod_i (x - \alpha_i)$) and $L = K(\alpha_1, \dots, \alpha_n)$.

I.C. SPLITTING FIELDS

I.C.2. PROPOSITION. If f splits over L as above, $L = K(\alpha_1, ..., \alpha_n)$ is equivalent to minimality of L: the nonexistence of L'/K, with $L \supseteq L' \supset K$, over which f splits.

PROOF. Suppose *L* is minimal; properness of the containment $L \supset K(\alpha_1, ..., \alpha_n)$ would yield a contradiction (take *L'* to be the smaller field), and so it's an equality.

Conversely, suppose $L = K(\alpha_1, ..., \alpha_n) \supset L' \supset K$, with f split over L': i.e., $f = c \prod_i (x - \alpha'_i)$, with $\alpha'_i \in L'$. But these will also be nroots (possibly with multiplicity) of f in L, and the roots of f (and their multiplicities) are unique because L[x] is a UFD. They generate L over K by assumption, which forces L' = L.

I.C.3. REMARK. Clearly, if L/K is a splitting field extension, then by the Tower Law L/K is finite, *a fortiori* algebraic.

Existence of splitting fields.

Since there is now no \mathbb{C} in sight, let's remind ourselves of how we can algebraically construct extensions containing a root "out of thin air".

I.C.4. LEMMA. If $f \in K[x]$ is irreducible of degree n, then there exists a simple extension $K(\alpha)/K$ with $[K(\alpha):K] = n$ and $f(\alpha) = 0$.

PROOF. We have the natural field extension

$$\iota \colon K \hookrightarrow L := K[x]/(f(x)).$$

Let $\alpha \in L$ denote the image of x under the quotient map $\nu \colon K[x] \twoheadrightarrow L$; then $L = K(\alpha)$, and $f(\alpha) = f(\nu(x)) = \nu(f(x)) = 0$. Hence $f \in (m_{\alpha})$, and irreducibility of f then gives $f = km_{\alpha}$ ($k \in K$). Conclude that $[L:K] = \deg(m_{\alpha}) = \deg(f) = n$.

I.C.5. THEOREM. Given $f \in K[x]$ of degree n (not necessarily irreducible), there exists a splitting field extension L/K with [L:K]|n!.

PROOF. Induce on *n* (it's clear for n = 1). There are two cases:

(a) <u>*f*</u> not irreducible over *K*. Write f = gh in K[x], with deg(g) = s and deg(h) = t both < n. By induction, there exists a splitting field

 L_0/K for g, with $[L_0:K]|s!$; so $g = \mu_g(x - \beta_1) \cdots (x - \beta_s)$ with $\mu_g \in K$ and $L_0 = K(\beta_1, \dots, \beta_s)$.

Now consider *h* as a polynomial in $L_0[x]$, and apply induction to get a splitting field extension L/L_0 for *h* with $[L:L_0]|t!$; that is, $h = \mu_h(x - \gamma_1) \cdots (x - \gamma_t)$ with $\mu_h \in L_0$ and $L = L_0(\gamma_1, \dots, \gamma_t) =$ $K(\beta_1, \dots, \beta_s, \gamma_1, \dots, \gamma_t)$. Moreover, since $\mu_g \mu_h$ is the coefficient of x^n in *f*, it belongs to *K*. So we conclude (by I.C.1(ii)) that L/K is a splitting field extension for *f*, and that $[L:K] = [L:L_0][L_0:K]$ divides s!t! hence divides (s + t)! = n! (since $\frac{(s+t)!}{s!t!} = {s+t \choose s} \in \mathbb{N}$).

(b) \underline{f} irreducible over K. By I.C.4, there exists $K(\alpha)/K$ of degree n, with $\overline{f(x)} = (x - \alpha)g(x)$ in $K(\alpha)[x]$. Since deg(g) = n - 1, we apply induction to get a splitting field extension $L/K(\alpha)$ for g, with $[L:K(\alpha)]|(n-1)!$. Moreover, we get $g(x) = \mu(x - \beta_1) \cdots (x - \beta_{n-1})$, with $\mu \in K(\alpha)$ and $\beta_i \in L$. Clearly $L = K(\alpha, \beta_1, \dots, \beta_{n-1})$ and $\mu \in K$. Hence L/K is a splitting field extension, and $[L:K] = [L:K(\alpha)][K(\alpha):K]$ divides (n-1)!n = n!.

I.C.6. REMARK. So for an irreducible polynomial $f \in K[x]$, we see that the degree *d* of a splitting field extension satisfies $n \le d \le n!$ and also divides *n*!. In particular, if n = 2, then d = 2, which reflects the fact that adjoining one root α of an irreducible quadratic has to give the other, by dividing $f(x)/(x - \alpha)$ in $K(\alpha)$.

Some examples of splitting fields.

I.C.7. EXAMPLE. Keeping *K* arbitrary, consider a quadratic polynomial $f(x) = x^2 + ax + b \in K[x]$. We break the analysis of the splitting field into two cases.

 $char(K) \neq 2$: We may write $f(x) = (x + \frac{a}{2})^2 - \frac{\mu}{4}$, where $\mu := a^2 - 4b$, and replace f by $g(x) := x^2 - \frac{\mu}{4}$. Clearly g splits over K (and the splitting field extension is trivial) iff μ has a square root in K. Otherwise, the splitting field extension has degree 2, and is $K(\sqrt{\mu})$; that is, the quadratic formula tells us that the splitting field is obtained by adjoining a square root.

20

 $[\]overline{{}^{9}\text{That}(x-\alpha)} \mid f(x) \text{ in } K(\alpha)[x] \text{ is } [Algebra I, III.G.16].$

<u>char(*K*) = 2</u>: We can't divide by 2 here, so the quadratic formula doesn't work. For simplicity, let's take $K = \mathbb{Z}_2$, so that there are only four polynomials x^2 , $x^2 + x$, $x^2 + 1$, and $x^2 + x + 1$ to analyze, and the first three split over *K*. That leaves $f(x) := x^2 + x + 1$, which is irreducible (why?). Let L/K be its splitting field extension. This is of degree 2, hence has 4 elements: $0, 1, \alpha, \beta$.

At least one of α , β must be a root, say α . But then $(\alpha + 1)^2 + (\alpha + 1) + 1 = \alpha^2 + 1 + \alpha + 1 + 1 = \alpha^2 + \alpha + 1 = 0 \implies \alpha + 1$ is a root; since it can't be 0, 1, or α , we have $\alpha + 1 = \beta$. So $f(x) = (x - \alpha)(x - \beta)$, and we also get $\alpha + \beta = 1 = \alpha\beta$. To finish off the multiplication table, $\alpha^2 = \alpha + 1 = \beta$ and $\beta^2 = \beta + 1 = \alpha$.

This also reveals that *L* is not obtained from *K* by adjoining a square root: because α and β are not square roots of anything in $K = \{0, 1\}!$ (On the other hand, $0 = (\alpha - 1)f(\alpha) = \alpha^3 - 1 \implies \alpha$ is a cube root of 1.)

Next we turn to several examples with $K = \mathbb{Q}$. You should make sure you can draw the tower diagrams of §I.A for each of them.

I.C.8. EXAMPLE. Let $f(x) := x^p - 1 \in \mathbb{Q}[x]$. Of course, we have $f(x) = (x - 1)\Phi_p(x)$, with $\Phi_p(x) = \sum_{j=0}^{p-1} x^j$ irreducible. Consider the field $L = \mathbb{Q}[y]/(\Phi_p(y))$. If we write ζ for the image of y under the quotient map $K[y] \rightarrow L$, then $\zeta, \zeta^2, \ldots, \zeta^{p-1}$ are all roots of Φ_p , and distinct in L.¹⁰ So in L[x], we have $f(x) = \prod_{j=0}^{p-1} (x - \zeta^j)$, and $L = K(\zeta)$ is the splitting field, of degree p - 1 over K.

Of course, *L* embeds in \mathbb{C} as $\mathbb{Q}(\zeta_p)$, by sending $\zeta \mapsto \zeta_p$ (or more generally, to ζ_p^k , for any $k \in \{1, ..., p-1\}$). While it's easier to construct the splitting field inside \mathbb{C} , the more abstract approach allows us to embed it more easily into in other extensions of \mathbb{Q} .

¹⁰To see that each ζ^k , $k \in \mathbb{Z}_p^*$, is a root, use $\zeta^p = 1$ to work mod p in exponents; and note that in $\Phi_p(\zeta^k) = 1 + \sum_{j=1}^{p-1} \zeta^{jk}$, the exponents run over all elements of \mathbb{Z}_p^* since multiplication by k is invertible there. That these roots are all distinct is just the fact that they are represented by different polynomials mod $(\Phi_p(x))$.

I. GALOIS THEORY

I.C.9. EXAMPLE. Put $f(x) := x^p - 2 \in \mathbb{Q}[x]$. This is irreducible by Eisenstein and Gauss, and is the minimal polynomial of $2^{\frac{1}{p}} \in \mathbb{R}$ over \mathbb{Q} ; so we have $[\mathbb{Q}(2^{\frac{1}{p}}):\mathbb{Q}] = p$.

But the splitting field is bigger than $\mathbb{Q}(2^{\frac{1}{p}})$. Given $\alpha \in \mathbb{C}$ any root of f, we have $(\alpha/2^{\frac{1}{p}})^p = \alpha^p/2 = 1$; hence $\alpha = 2^{\frac{1}{p}}\zeta_p^j$ for some $j \in \{0, 1, ..., p-1\}$, and this gives the list of roots of f in \mathbb{C} . Conclude that f splits over $L := \mathbb{Q}(2^{\frac{1}{p}}, \zeta_p)$.

Since *L* contains the fields $\mathbb{Q}(\zeta_p)$ and $\mathbb{Q}(2^{\frac{1}{p}})$, of respective degrees p-1 and p over \mathbb{Q} , by I.A.9 $d = [L:\mathbb{Q}]$ is divisible by both these degrees hence (as they are coprime) by p(p-1). So $d \ge p(p-1)$. On the other hand, the minimal polynomial \tilde{f} of $2^{\frac{1}{p}}$ over $\mathbb{Q}(\zeta_p)$ must divide f, and so

$$[L:\mathbb{Q}(\zeta_p)] = [\mathbb{Q}(\zeta_p)(2^{\frac{1}{p}}):\mathbb{Q}(\zeta_p)] = \deg(\tilde{f}) \le \deg(f) = p$$

whence by the Tower Law

$$d = [L:\mathbb{Q}] = [L:\mathbb{Q}(\zeta_p)][\mathbb{Q}(\zeta_p):\mathbb{Q}] \le p(p-1).$$

This shows that in fact $[L:\mathbb{Q}] = p(p-1)$.

I.C.10. EXAMPLE. Take $f(x) := (x^2 - 5)(x^2 - 7) \in \mathbb{Q}[x]$. We first consider the intermediate extension $L_0 := \mathbb{Q}[y]/(y^2 - 5)$ (writing $\sqrt{5}$ for the image of *y*).

I claim that $x^2 - 7$ is irreducible over L_0 . Otherwise, we would have

$$7 = (a + b\sqrt{5})^2 = (a^2 + 5b^2) + 2ab\sqrt{5}$$

for some $a, b \in \mathbb{Q}$, which gives¹¹ ab = 0 hence $a^2 = 7$ or $5b^2 = 7$, which is impossible.

So the splitting field $L := L_0[z]/(z^2 - 7)$ has degree 2 over L_0 , and degree 4 over \mathbb{Q} .

I.C.11. EXAMPLE. Let's compare the splitting fields for $f(x) := x^6 - 1$ and $g(x) := x^6 + 1$ over \mathbb{Q} .

22

¹¹Why? Think in vector space terms: 1, $\sqrt{5}$ is a basis of L_0 over Q.

I.C. SPLITTING FIELDS

Of course, *f* is reducible, and factors as $(x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1)$. If we write $L := \mathbb{Q}[y]/(y^2 + y + 1)$ (with $\omega \in L$ the image of *y*), then $\omega^2 + \omega + 1 = 0 \implies (-\omega)^2 - (-\omega) + 1 = 0$. So *L* is the splitting field (and identifies with $\mathbb{Q}(\zeta_3) \subset \mathbb{C}$).

Working in \mathbb{C} , *g* has roots **i**, $\mathbf{i}\zeta_3$, $\mathbf{i}\zeta_3^2$, $-\mathbf{i}$, $-\mathbf{i}\zeta_3$, and $-\mathbf{i}\zeta_3^2$. Since $\mathbb{Q}(\zeta_3) \neq \mathbb{Q}(\mathbf{i})$, the splitting field *M* is a (proper) quadratic extension of *L*, of degree 4 over \mathbb{Q} .

Finally, here are a couple more examples over finite fields.

I.C.12. EXAMPLE. Let *L* be a splitting field for the irreducible polynomial $f(x) := x^3 - x + 1 \in \mathbb{Z}_3[x]$, with $\alpha \in L$ a root. One checks that $\alpha + 1$ and $\alpha - 1$ are also roots. Hence $L = \mathbb{Z}_3(\alpha)$ and $[L:\mathbb{Z}_3] = 3$.

I.C.13. EXAMPLE. What if we take $f(x) := x^3 + x + 1 \in \mathbb{Z}_2[x]$? I claim that, as in I.C.12, the degree-3 extension $L := \mathbb{Z}_2[y]/(f(y))$ is already a splitting field. Writing α for the image of y, over L we have

 $f(x) = (x - \alpha)(x^2 + ax + b) = x^3 + (a - \alpha)x^2 + (b - a\alpha)x - b\alpha$ hence $b = -\frac{1}{\alpha} = 1 + \alpha^2$ and $a = \alpha$. It follows that $(\alpha^2)^2 + a(\alpha^2) + b = \alpha(\alpha^3) + \alpha^3 + \alpha^2 + 1 = \alpha(\alpha + 1) + \alpha + 1 + \alpha^2 + 1 = 0$,

so that α^2 is also a root of *f*, proving the claim.

Embeddings of simple extensions.

I.C.14. PROPOSITION. Given a simple algebraic extension $K(\alpha)/K$, with $m_{\alpha} \in K[x]$ the minimal polynomial of α over K; and an embedding $\iota: K \hookrightarrow L$, with an element $\beta \in L$. Write $\underline{\iota}: K[x] \hookrightarrow L[x]$ for the resulting homomorphism.¹² Then the following are equivalent:

- (i) β is a root of $\underline{\iota}(m_{\alpha}) \in L[x]$; and
- (ii) there exists $j: K(\alpha) \hookrightarrow L$ with $j(\alpha) = \beta$ and $j|_K = i$.

Moreover, in this case 1 is unique.

¹²As you have seen, we usually just write t for this, but we need the notational distinction here to make the proof intelligible.

PROOF. First we get uniqueness out of the way: suppose j and j' are two such "extensions of ι ", and consider

$$K \subseteq \mathbb{F} := \{\gamma \in K(\alpha) \mid j(\gamma) = j'(\gamma)\} \subseteq K(\alpha).$$

Clearly $\alpha \in \mathbb{F}$ since $j(\alpha) = \beta = j'(\alpha)$, and so $\mathbb{F} = K(\alpha)$. Turning to the equivalence:

$$(\underline{\mathrm{ii}}) \Longrightarrow (\underline{\mathrm{i}}): \underline{\mathrm{i}}(m_{\alpha})(\beta) = \underline{\mathrm{j}}(m_{\alpha})(\mathrm{j}(\alpha)) = \mathrm{j}(m_{\alpha}(\alpha)) = \mathrm{j}(0) = 0.$$

(i) \implies (ii): Write m_{β} for the minimal polynomial of β over $K' := \iota(K)$. Since $\iota: K \to K'$ is an isomorphism, $\underline{\iota}(m_{\alpha}) \in K'[x]$ is irreducible; and so by (i) we have $\underline{\iota}(m_{\alpha}) = m_{\beta}$. Now consider the diagram

Omitting the dotted arrows for the moment, note that the long composition from *K* to *L* is just *i*. Since $\ker(\nu' \circ \underline{\imath}) = \underline{\imath}^{-1}(\ker(\nu')) = \underline{\imath}^{-1}((m_{\beta})) = (m_{\alpha})$, the Fundamental Theorem gives $\overline{\imath}$ as shown (so that the diagram commutes). We then just define $\jmath := \overline{\operatorname{ev}}_{\beta} \circ \overline{\imath} \circ \overline{\operatorname{ev}}_{\alpha}^{-1}$; obviously this sends $k \mapsto \imath(k)$, and it sends $\alpha \mapsto \beta$ because $\overline{\imath}$ sends $\overline{x} \mapsto \overline{x}$.

I.C.16. COROLLARY. (a) Let $K(\alpha)/K$ be algebraic, and $\iota: K \hookrightarrow L$ an embedding, such that $\iota(m_{\alpha})$ has r distinct roots in L. Then there are exactly r distinct embeddings $\iota: K(\alpha) \hookrightarrow L$ with $\iota|_{K} = \iota$.

(b) Let $K(\alpha)/K$ and $K'(\alpha')/K'$ be algebraic, with $\iota: K \xrightarrow{\cong} K'$. Then $m_{\alpha'} = \iota(m_{\alpha}) \iff \exists j: K(\alpha) \xrightarrow{\cong} K'(\alpha')$ with $j(\alpha) = \alpha'$ and $j|_{K} = \iota$ (in which case j is unique).

PROOF. Both follow directly from I.C.14. (For (b), take $L := K'(\alpha')$ and $\beta := \alpha$.)

24

I.C.17. EXAMPLES. (A) Let $K = \mathbb{Q}$, $K(\theta) = \mathbb{Q}[x]/(x^3 - 3x - 1)$, and $L = \mathbb{R}$. Recall from I.A.2 that 3 embeddings $\varphi_i : \mathbb{Q}(\theta) \hookrightarrow \mathbb{R}$ were obtained by sending $\theta \mapsto \theta_i$, with $\{\theta_i\}$ the three roots of $x^3 - 3x - 1$ in \mathbb{R} . By I.C.16(a), these are *all* of the real embeddings; composing them with the inclusion $\mathbb{R} \hookrightarrow \mathbb{C}$ gives the only embeddings of $\mathbb{Q}(\theta)$ in \mathbb{C} (why?).

(B) If we change the polynomial to $x^3 - 2$ (cf. I.A.3), then there is only one root in \mathbb{R} , but two more in \mathbb{C} . In this case, by the Corollary there is exactly one embedding $\mathbb{Q}(\theta) \hookrightarrow \mathbb{R}$, but two additional (conjugate) embeddings $\mathbb{Q}(\theta) \hookrightarrow \mathbb{C}$.

(C) What about, say, $K = \mathbb{Z}_p(y)$ and $K(\alpha) := \mathbb{Z}_p(y)[x]/(x^p - y)$? As we will see below, $x^p - y$ is irreducible in $\mathbb{Z}_p(y)[x]$. Moreover, if β is a root in some extension $(\mathbb{Z}_p(y) \stackrel{\iota}{\hookrightarrow})L$, then $\beta^p = y$ and $(x - \beta)^p = x^p - \beta^p = x^p - y$, making β is the *only* root in *L*. (The "freshman's dream" is obviously crucial here.) So there is *only one embedding* $K(\alpha) \hookrightarrow L$ extending ι .

Uniqueness and automorphisms of splitting fields. First, we prove a general result which appears to have nothing to do with either of these.

I.C.18. THEOREM. Given $f \in K[x]$ of degree n, with splitting field extension L/K of degree d := [L:K]. Let $\iota: K \hookrightarrow L'$ be an embedding. Then there exists $\jmath: L \hookrightarrow L'$ extending¹³ ι if and only if $\iota(f)$ splits over L'. In this case, the number of possible choices for \jmath is $\leq d$, with equality if $\iota(f)$ has n distinct roots in L'.

PROOF. We may assume f monic, with $f(x) = \prod_{i=1}^{n} (x - \alpha_i)$ in L[x]. If j exists, then $\iota(f) = j(f) = \prod_{i=1}^{n} (x - j(\alpha_i))$ splits over L'.

For the converse direction and the count of possible j's, we induce on d. We need to show that if f splits over L', we can embed its splitting field into L' in $\leq d$ different ways, extending ι . (The case d = 1 means that L = K, so the extension is the trivial one and there is one way to do it.)

 $[\]overline{^{13}}$ That is, $j|_K = i$.

I. GALOIS THEORY

So assume d > 1. We may then assume $\alpha_1 \notin K$; let m_{α_1} be its minimal polynomial over K, and write $f = m_{\alpha_1}g$. In L[x], for some ordering of the roots, we have $m_{\alpha_1}(x) = \prod_{i=1}^r (x - \alpha_i)$. By assumption, $\iota(m_{\alpha_1})\iota(g) = \iota(f)$ splits over L', so that (in L'[x]) $\iota(m_{\alpha_1})(x) =$ $\prod_{i=1}^r (x - \beta_i)$ and $\iota(f)(x) = \prod_{i=1}^n (x - \beta_i)$ for some $\beta_i \in L'$. Notice that $K(\alpha_1)/K$ is simple, and $\{\beta_1, \ldots, \beta_r\}$ are roots of $\iota(m_{\alpha_1})$ in L', so that I.C.14 gives for each $i \in \{1, \ldots, r\}$ a unique $\iota_1 \colon K(\alpha_1) \hookrightarrow L'$ (with $\iota_1|_K = \iota$) sending $\alpha_1 \mapsto \beta_i$. The number of possible choices here is the number of *distinct* β_i with $i \in \{1, \ldots, r\}$.

Setting $K_1 := K(\alpha_1)$ and $f_1 := g \in K_1[x]$, and choosing an $\iota_1: K_1 \hookrightarrow L'$, we note that f_1 splits over L', and L/K_1 is a splitting field extension for f_1 , of degree $d_1 := [L:K(\alpha_1)] = \frac{[L:K]}{[K(\alpha_1):K]} = \frac{d}{r} < d$. By the inductive hypothesis, there exists a $j: L \hookrightarrow L'$ extending ι_1 hence ι . The number of possible choices is $\leq d_1$, with equality iff the $\beta_{r+1}, \ldots, \beta_n$ are distinct.

Conclude that if β_1, \ldots, β_n are distinct, then there are *r* choices of ι_1 , and for each of those, $\frac{d}{r}$ choices of *j* extending it, for a total of *d* choices overall. Clearly in general this is the upper bound.

I.C.19. COROLLARY. Given $f \in K[x]$, an isomorphism $\iota: K \xrightarrow{\cong} K'$, and L/K resp. L'/K' splitting field extensions for f resp. $\iota(f)$, there exists $a j: L \xrightarrow{\cong} L'$ extending ι (with the same number of choices as in I.C.18).

PROOF. Applying I.C.18 to $\iota: K \xrightarrow{\cong} K' \hookrightarrow L'$ yields $\iota: L \hookrightarrow L'$ extending ι . We need to show that ι is onto. Assume f monic.

We have $f(x) = \lambda \prod_{i=1}^{n} (x - \alpha_i)$ in L[x], hence $\iota(f) = \iota(\lambda) \prod_{i=1}^{n} (x - \iota(\alpha_i))$ in L'[x]. Since L' is a splitting field for $\iota(f)$, we have $L' = K'(\iota(\alpha_1), \ldots, \iota(\alpha_n)) \subset \iota(L)$. So ι is indeed surjective.

I.C.20. REMARK. In spite of the non-uniqueness of j in the last Theorem and Corollary, the latter provides an affirmative answer to our uniqueness question (3) from the beginning of the section. If we take K' = K and $t = id_K$ in I.C.19, it says that any two splitting field extensions are isomorphic *over* K (that is, the isomorphism even restricts to the identity on K). I.C.21. COROLLARY. Let $f \in K[x]$ be irreducible, L/K a splitting field extension for f.

(i) Given $\alpha, \beta \in L$ two roots of f, there exists an^{14} automorphism $\sigma: L \xrightarrow{\cong} L$ with $\sigma(\alpha) = \beta$ and $\sigma|_K = id_K$.

(ii) There are at most [L:K] automorphisms of L over K; and there are exactly this number if f has deg(f) distinct roots.

PROOF. For (ii), just apply I.C.19 with K' = K, $\iota = id_K$ and L' = L.

To see (i), apply I.C.16(b) to produce $\tau : K(\alpha) \xrightarrow{\cong} K(\beta)$ (with $\tau|_K = id_K$) sending $\alpha \mapsto \beta$. But then $L/K(\alpha)$ and $L/K(\beta)$ are splitting field extensions for *f*, to which we apply I.C.19 (with $\iota = \tau$) to get the result.

¹⁴Not necessarily unique, unless $L = K(\alpha)$.