28 I. GALOIS THEORY
I.D. Algebraic closures

Recall that any polynomial f € Q[x] splits over C. Since the roots
are algebraic over Q, they belong to Q (cf. 1.A.18), hence f actually
splits in Q[x].

We have shown that every f € K][x], for any K, has a splitting
field. But is there a field that does for K what Q does for Q — an
algebraic extension that splits every polynomial at once? Indeed there

is, and we will construct it.

I.D.1. DEFINITION. (i) L is algebraically closed if any f € Lix|
splits over L.
(ii) L/K is an algebraic closure if L/K is algebraic and L is alge-
braically closed.

I.D.2. EXAMPLE. C/R is an algebraic closure, but C/Q is not:
there are only countably many polynomials over Q, hence count-
ably many roots of such equations in C; but C is uncountable, and
the remaining elements must therefore be transcendental over Q. Of
course, the point is that Q/Q is an algebraic closure, and this argu-
ment shows that Q C C is a proper subfield.

I.D.3. PROPOSITION. The following are equivalent:

(i) L/ K is an algebraic closure.

(i) L/ K is algebraic; and any irreducible f € K[x| splits over L.
(iii) L/K is algebraic; and L' / L algebraic —> L' = L.

PROOF. (i) = (ii): clear from the definition.

(il) = (iii): Given L’/ L algebraic, L' /K is algebraic. Take &’ € L’
and its (irreducible) minimal polynomial m, € K[x]. By (ii), my =
[Ti(x — A;) splits over L, and so &' = Aj for some j. That is, o' € L;
conclude that L = L'.

(iii) == (i): Given f € L[x], there exists a splitting field extension
L'/L. Since this is necessarily algebraic, we have L = L’ by assump-
tion, and f splits over L. So L is algebraically closed. 0
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In particular, there are no nontrivial algebraic extensions of fields
like C and Q:

L.D.4. COROLLARY. If L is algebraically closed and L'/ L is an alge-
braic extension, then L' = L.

PROOF. Take K = L in I1.D.3(i), and conclude (iii). O

If you had any lingering doubts about Q being an algebraic clo-
sure of Q, just take L = C and K = Q in the following;:

I.D.5. COROLLARY. Given an extension L/K, with L algebraically
closed and Lo := Lyg/x C L the subfield of elements algebraic over K (as
in .LA.17). Then Ly is an algebraic closure of K.

PROOF. Replace “L/K” in1.D.3(ii) by Ly/K, and conclude (i). [

We now formulate the main existence result:
1.D.6. THEOREM. Any field K has an algebraic closure K.
DOOMED PROOF (V. 1.0). Let

& :={Mfield | M D K, M/K algebraic},

partially ordered by inclusion. Given a chain C, consider the set
Me == UpeeM. If a, B € Mg, there exists M € C witha,p € M
so that 04,3,04_1, a+ B € M; hence Mg is a field. Moreover, M. /K is
algebraic since any « € M is contained in some M algebraic over
K (« algebraic). Conclude that M. € £ gives an upper bound for C;
by Zorn, it follows that £ has a maximal element E. By “(iii) = (i)”
in .D.3, E/K is an algebraic closure. O

The problem is at the very beginning of the proof: what is meant
by “ordered by inclusion”? That would work if all these M’s are
subfields of a larger field — like an algebraic closure. Hmm. Some
nice circular reasoning there.

There is a way to fix it by embedding all extensions inside the
power set of K[x] x IN, but I'd rather not; instead, we take a different
tack.



30 I. GALOIS THEORY

PROOF (V. 2.0). Let
S:={(f,j) | f € K[x] monic nonconstant, 1 < j < deg(f)},

and define a corresponding set Xs := {x;(f) | (f,j) € S} of formal
indeterminates. For each monic nonconstant f = x" — ay(f)x" 1 +
-+ (=1)"a,(f) (with a;(f) € K), we write formally

n

[T(x—x(f) =" —an(Hx"" + -+ (=1)"ou(f) € K[Xs][x],

j=1
where 0;(f) = ¥ «..cj; Xj,(f) - - - x;(f) are elementary symmetric
polynomials in the indeterminates, and put t;(f) := 0;(f) — a;(f). 1
claim that the ideal 7 := ({t;(f)} ;) C K[Xs] is proper.
Suppose (on the contrary) that 1 € Z, i.e. that exist r; € K[Xg]
and t;,(f;) such that r1t; (f1) + - - - rntiy(fn) = 1. Let L/ K be a split-
ting field extension for f; - - - fy, and write (in L[x])

dy

fo=TIx—ag) = x* a1 (fo)x" "+ -+ (=1)*an(fr),

j=1
where the 4;(f;)’s are clearly elementary symmetric polynomials in
the a;’s for each ¢. Consider the evaluation map

ev: K[Xg] — L
k— 1(k)
xi(feo) = ay
{other indeterminates in Xs} — 0.
We have ev(o;(fy)) = ai(fs) hence ev(t;(f;)) =01 < ¢ < N,1<
i < ny), which gives
1=ev(l) =ev(r)ev(ty(fi)) +---+ev(rn)ev(ti,(fn)) =0,

which is absurd. So 1 ¢ Z, and Z is proper as claimed.

Recall from [Algebra I] that by Zorn’s Lemma, there exists a max-
imal proper ideal J such that Z C J C K[Xg]|. This gives a field
M = K[Xs]|/J, a quotient map g: K[Xs] - M, and (by compos-
ing g with K — K[Xg|) an embedding j: K — M. Notice that
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1(a;(f)) = q(a;(f)) = q(o;(f)) since Z C J. Iclaim that M/K is
an algebraic closure of K. Equivalently, we can show that 1.D.3(ii)
holds: M/K is algebraic and splits all of our polynomials f.

For each (f,]) € S, set B;(f) := q(x;(f)) € M. We have

f=a"—a(fa" e+ (1) a(f) € Klx] \ K
= () = 2" @ -+ (<) (an(f)) € M
=" —q(ar(F)x"" 4+ (1) gl )
=q (" —a (D" - (1))
= q (T (x = x()) )
=TT (x — Bi(F),

so f splits over M. Moreover, since K[Xs| is generated over K by the
xi(f), M is generated over K by their images B;(f); being roots of
f (for various f’s), these are algebraic over j(K). By LA.21, M/K is
algebraic. O

Turning to the uniqueness of algebraic closures, we first need a

LD.7. LEMMA. Let L/K be an algebraic extension, and K' an alge-
braically closed field. Then any embedding 1: K — K’ extends to j: L —
K.

PROOF. Define a partial order on

S = {(M,G)

M C L a subfield containing K, and
6: M — K’ an embedding with |x =1

by (M,0) < (M',0') <— M C M'and ¢’|p; = 0.

Let C C S be any chain, and put N := U 9)c¢M. Each n €
N belongs to M for some (M,0) € C, and we define a function
¢: N — K' by ¢(n) := 6(n). This is well-defined (use 6'|y1 = 0),
injective (otherwise injectivity would fail on some M), and has an

upper bound (namely, (N, ¢)). So Zorn hands us a maximal element
(M, Q) for S.
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Suppose M C L, and let « € L\ M. Clearly « is algebraic over
M, with minimal polynomial 7,; and so ®(m,) splits over K’. Pick
aroot € K/, so that @(m,)(B) = 0. Then 1.C.14 produces an em-
bedding ©": M(a) — K’ (sending a — p) which extends ® (hence
1). This contradicts maximality of (M, ®), and we conclude that
M =L O

1.D.8. THEOREM. Given 1: K < L and i": K — L’ two algebraic
closures for K. Then there exists an isomorphism j: L 5 L' over K (ie.
such that jo1=1).

PROOF. By the Lemma, there exists j: L < L' withjo1 =1. We
must show j is onto.

Suppose f € K][x] is irreducible. Then 1(f) splits (over L) and so
7 (f) = j(a(f)) splits (over j(L)). Hence 7': K < j(L) is an algebraic
closure for K.

Finally, since L'/K is algebraic, so is L'/j(L). By (i) = (iii) in
I.D.3, L’ = j(L) as desired. O

[.D.9. DEFINITION. In view of the uniqueness theorem 1.D.8, we
shall write K for the algebraic closure of K.

Note that, as a general rule, K has no nontrivial algebraic extensions.

A glance ahead. Here are two key conditions on an algebraic ex-
tension L/K which we will take up next.
First, L /K will be called normal if the condition

f € K[x] irreducible = f splits over L or has no roots in L

holds. Equivalently, for each &« € L its minimal polynomial m, €
K[x] splits over L. This will link up nicely with our earlier use of
“normal”, for groups.

Second, an irreducible polynomial f € K][x] is separable if it has
deg(f) distinct roots in a splitting field. Accordingly, we call the
extension L/K separable if the minimal polynomial m, € K[x] of
each « € L is separable. This is not an issue in characteristic zero:
everything is separable.
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To link with the material we have just covered, there is a notion
of separable algebraic closure: instead of taking the full K, you take
only the elements which have separable minimal polynomials. By
the previous remark on characteristic zero, this does not affect Q.



