I.D. Algebraic closures

Recall that any polynomial $f \in \mathbb{Q}[x]$ splits over \mathbb{C}. Since the roots are algebraic over \mathbb{Q}, they belong to $\overline{\mathbb{Q}}$ (cf. I.A.18), hence f actually splits in $\overline{\mathbb{Q}}[x]$.

We have shown that every $f \in K[x]$, for any K, has a splitting field. But is there a field that does for K what $\overline{\mathbb{Q}}$ does for \mathbb{Q} - an algebraic extension that splits every polynomial at once? Indeed there is, and we will construct it.
I.D.1. Definition. (i) L is algebraically closed if any $f \in L[x]$ splits over L.
(ii) L / K is an algebraic closure if L / K is algebraic and L is algebraically closed.
I.D.2. EXAMPLE. \mathbb{C} / \mathbb{R} is an algebraic closure, but \mathbb{C} / \mathbb{Q} is not: there are only countably many polynomials over \mathbb{Q}, hence countably many roots of such equations in \mathbb{C}; but \mathbb{C} is uncountable, and the remaining elements must therefore be transcendental over \mathbb{Q}. Of course, the point is that $\overline{\mathbb{Q}} / \mathbb{Q}$ is an algebraic closure, and this argument shows that $\overline{\mathbb{Q}} \subset \mathbb{C}$ is a proper subfield.
I.D.3. PRoposition. The following are equivalent:
(i) L / K is an algebraic closure.
(ii) L / K is algebraic; and any irreducible $f \in K[x]$ splits over L.
(iii) L / K is algebraic; and L^{\prime} / L algebraic $\Longrightarrow L^{\prime}=L$.

PROOF. (i) \Longrightarrow (ii): clear from the definition.
(ii) \Longrightarrow (iii): Given L^{\prime} / L algebraic, L^{\prime} / K is algebraic. Take $\alpha^{\prime} \in L^{\prime}$ and its (irreducible) minimal polynomial $m_{\alpha^{\prime}} \in K[x]$. By (ii), $m_{\alpha^{\prime}}=$ $\prod_{i}\left(x-\lambda_{i}\right)$ splits over L, and so $\alpha^{\prime}=\lambda_{j}$ for some j. That is, $\alpha^{\prime} \in L$; conclude that $L=L^{\prime}$.
(iii) \Longrightarrow (i): Given $f \in L[x]$, there exists a splitting field extension L^{\prime} / L. Since this is necessarily algebraic, we have $L=L^{\prime}$ by assumption, and f splits over L. So L is algebraically closed.

In particular, there are no nontrivial algebraic extensions of fields like \mathbb{C} and $\overline{\mathbb{Q}}$:
I.D.4. COROLLARY. If L is algebraically closed and L^{\prime} / L is an algebraic extension, then $L^{\prime}=L$.

Proof. Take $K=L$ in I.D.3(i), and conclude (iii).
If you had any lingering doubts about $\overline{\mathbb{Q}}$ being an algebraic closure of \mathbb{Q}, just take $L=\mathbb{C}$ and $K=\mathbb{Q}$ in the following:
I.D.5. Corollary. Given an extension L / K, with L algebraically closed and $L_{0}:=L_{\text {alg/K }} \subset L$ the subfield of elements algebraic over K (as in I.A.17). Then L_{0} is an algebraic closure of K.

Proof. Replace " L / K " in I.D.3(ii) by L_{0} / K, and conclude (i).
We now formulate the main existence result:
I.D.6. Theorem. Any field K has an algebraic closure \bar{K}.

Doomed proof (v. 1.0). Let

$$
\mathcal{E}:=\{M \text { field } \mid M \supset K, M / K \text { algebraic }\}
$$

partially ordered by inclusion. Given a chain \mathcal{C}, consider the set $\mathcal{M}_{\mathcal{C}}:=\cup_{M \in \mathcal{C}} M$. If $\alpha, \beta \in \mathcal{M}_{\mathcal{C}}$, there exists $M \in \mathcal{C}$ with $\alpha, \beta \in M$ so that $\alpha \beta, \alpha^{-1}, \alpha+\beta \in M$; hence $\mathcal{M}_{\mathcal{C}}$ is a field. Moreover, $\mathcal{M}_{\mathcal{C}} / K$ is algebraic since any $\alpha \in \mathcal{M}_{\mathcal{C}}$ is contained in some M algebraic over K (α algebraic). Conclude that $\mathcal{M}_{\mathcal{C}} \in \mathcal{E}$ gives an upper bound for \mathcal{C}; by Zorn, it follows that \mathcal{E} has a maximal element E. By "(iii) \Longrightarrow (i)" in I.D.3, E / K is an algebraic closure.

The problem is at the very beginning of the proof: what is meant by "ordered by inclusion"? That would work if all these M's are subfields of a larger field - like an algebraic closure. Hmm. Some nice circular reasoning there.

There is a way to fix it by embedding all extensions inside the power set of $K[x] \times \mathbb{N}$, but I'd rather not; instead, we take a different tack.

Proof (v. 2.0). Let

$$
\mathcal{S}:=\{(f, j) \mid f \in K[x] \text { monic nonconstant, } 1 \leq j \leq \operatorname{deg}(f)\}
$$

and define a corresponding set $X_{\mathcal{S}}:=\left\{x_{j}(f) \mid(f, j) \in \mathcal{S}\right\}$ of formal indeterminates. For each monic nonconstant $f=x^{n}-a_{1}(f) x^{n-1}+$ $\cdots+(-1)^{n} a_{n}(f)$ (with $a_{i}(f) \in K$), we write formally

$$
\prod_{j=1}^{n}\left(x-x_{j}(f)\right)=x^{n}-\sigma_{1}(f) x^{n-1}+\cdots+(-1)^{n} \sigma_{n}(f) \in K\left[X_{\mathcal{S}}\right][x]
$$

where $\sigma_{i}(f):=\sum_{j_{1}<\cdots<j_{i}} x_{j_{1}}(f) \cdots x_{j_{i}}(f)$ are elementary symmetric polynomials in the indeterminates, and put $t_{i}(f):=\sigma_{i}(f)-a_{i}(f)$. I claim that the ideal $\mathcal{I}:=\left(\left\{t_{i}(f)\right\}_{f, i}\right) \subset K\left[X_{\mathcal{S}}\right]$ is proper.

Suppose (on the contrary) that $1 \in \mathcal{I}$, i.e. that exist $r_{\ell} \in K\left[X_{\mathcal{S}}\right]$ and $t_{i_{\ell}}\left(f_{\ell}\right)$ such that $r_{1} t_{i_{1}}\left(f_{1}\right)+\cdots r_{N} t_{i_{N}}\left(f_{N}\right)=1$. Let L / K be a splitting field extension for $f_{1} \cdots f_{N}$, and write (in $L[x]$)

$$
f_{\ell}=\prod_{j=1}^{d_{\ell}}\left(x-\alpha_{\ell j}\right)=x^{d_{\ell}}-a_{1}\left(f_{\ell}\right) x^{d_{\ell}-1}+\cdots+(-1)^{d_{\ell}} a_{n}\left(f_{\ell}\right)
$$

where the $a_{i}\left(f_{\ell}\right)^{\prime}$ s are clearly elementary symmetric polynomials in the $\alpha_{\ell j}$'s for each ℓ. Consider the evaluation map

$$
\begin{aligned}
\mathrm{ev}: K\left[X_{\mathcal{S}}\right] & \rightarrow L \\
k & \mapsto \imath(k) \\
x_{j}\left(f_{\ell}\right) & \mapsto \alpha_{\ell j}
\end{aligned}
$$

$\left\{\right.$ other indeterminates in $\left.X_{\mathcal{S}}\right\} \mapsto 0$.
We have $\operatorname{ev}\left(\sigma_{i}\left(f_{\ell}\right)\right)=a_{i}\left(f_{\ell}\right)$ hence $\operatorname{ev}\left(t_{i}\left(f_{\ell}\right)\right)=0(1 \leq \ell \leq N, 1 \leq$ $i \leq n_{\ell}$), which gives

$$
1=\operatorname{ev}(1)=\operatorname{ev}\left(r_{1}\right) \operatorname{ev}\left(t_{i_{1}}\left(f_{1}\right)\right)+\cdots+\operatorname{ev}\left(r_{N}\right) \operatorname{ev}\left(t_{i_{N}}\left(f_{N}\right)\right)=0
$$

which is absurd. So $1 \notin \mathcal{I}$, and \mathcal{I} is proper as claimed.
Recall from [Algebra I] that by Zorn's Lemma, there exists a maximal proper ideal \mathcal{J} such that $\mathcal{I} \subseteq \mathcal{J} \subsetneq K\left[X_{\mathcal{S}}\right]$. This gives a field $M:=K\left[X_{\mathcal{S}}\right] / \mathcal{J}$, a quotient $\operatorname{map} q: K\left[X_{\mathcal{S}}\right] \rightarrow M$, and (by composing q with $K \hookrightarrow K\left[X_{\mathcal{S}}\right]$) an embedding $\jmath: K \hookrightarrow M$. Notice that
$\jmath\left(a_{i}(f)\right)=q\left(a_{i}(f)\right)=q\left(\sigma_{i}(f)\right)$ since $\mathcal{I} \subset \mathcal{J}$. I claim that M / K is an algebraic closure of K. Equivalently, we can show that I.D.3(ii) holds: M / K is algebraic and splits all of our polynomials f.

For each $(f, j) \in \mathcal{S}$, set $\beta_{j}(f):=q\left(x_{j}(f)\right) \in M$. We have

$$
\begin{aligned}
f & =x^{n}-a_{1}(f) x^{n-1}+\cdots+(-1)^{n} a_{n}(f) \in K[x] \backslash K \\
\Longrightarrow \jmath(f) & =x^{n}-\jmath\left(a_{1}(f)\right) x^{n-1}+\cdots+(-1)^{n} \jmath\left(a_{n}(f)\right) \in M[x] \\
& =x^{n}-q\left(\sigma_{1}(f)\right) x^{n-1}+\cdots+(-1)^{n} q\left(\sigma_{n}(f)\right) \\
& =q\left(x^{n}-\sigma_{1}(f) x^{n-1}+\cdots+(-1)^{n} \sigma_{n}(f)\right) \\
& =q\left(\prod_{j=1}^{n}\left(x-x_{j}(f)\right)\right) \\
& =\prod_{j=1}^{n}\left(x-\beta_{j}(f)\right),
\end{aligned}
$$

so f splits over M. Moreover, since $K\left[X_{\mathcal{S}}\right]$ is generated over K by the $x_{j}(f), M$ is generated over K by their images $\beta_{j}(f)$; being roots of f (for various f^{\prime} s), these are algebraic over $\jmath(K)$. By I.A.21, M / K is algebraic.

Turning to the uniqueness of algebraic closures, we first need a
I.D.7. Lemma. Let L / K be an algebraic extension, and K^{\prime} an algebraically closed field. Then any embedding $1: K \hookrightarrow K^{\prime}$ extends to $\jmath: L \hookrightarrow$ K^{\prime} 。

Proof. Define a partial order on

$$
\mathcal{S}:=\left\{\begin{array}{c|c}
(M, \theta) & \begin{array}{c}
M \subset L \text { a subfield containing } K, \text { and } \\
\theta: M \hookrightarrow K^{\prime} \text { an embedding with }\left.\theta\right|_{K}=\imath
\end{array}
\end{array}\right\}
$$

by $(M, \theta) \leq\left(M^{\prime}, \theta^{\prime}\right) \Longleftrightarrow M \subset M^{\prime}$ and $\left.\theta^{\prime}\right|_{M}=\theta$.
Let $\mathcal{C} \subset \mathcal{S}$ be any chain, and put $\mathcal{N}:=\cup_{(M, \theta) \in \mathcal{C}} M$. Each $n \in$ \mathcal{N} belongs to M for some $(M, \theta) \in \mathcal{C}$, and we define a function $\phi: \mathcal{N} \rightarrow K^{\prime}$ by $\phi(n):=\theta(n)$. This is well-defined (use $\left.\theta^{\prime}\right|_{M}=\theta$), injective (otherwise injectivity would fail on some M), and has an upper bound (namely, (\mathcal{N}, ϕ)). So Zorn hands us a maximal element (\mathcal{M}, Θ) for \mathcal{S}.

Suppose $\mathcal{M} \subsetneq L$, and let $\alpha \in L \backslash \mathcal{M}$. Clearly α is algebraic over \mathcal{M}, with minimal polynomial m_{α}; and so $\Theta\left(m_{\alpha}\right)$ splits over K^{\prime}. Pick a root $\beta \in K^{\prime}$, so that $\Theta\left(m_{\alpha}\right)(\beta)=0$. Then I.C. 14 produces an embedding $\Theta^{\prime}: \mathcal{M}(\alpha) \hookrightarrow K^{\prime}$ (sending $\alpha \mapsto \beta$) which extends Θ (hence 1). This contradicts maximality of (\mathcal{M}, Θ), and we conclude that $\mathcal{M}=L$.
I.D.8. THEOREM. Given $\imath: K \hookrightarrow L$ and $\imath^{\prime}: K \hookrightarrow L^{\prime}$ two algebraic closures for K. Then there exists an isomorphism $\jmath: L \stackrel{\cong}{\rightrightarrows} L^{\prime}$ over K (i.e. such that $\jmath \circ \imath=\imath^{\prime}$).

Proof. By the Lemma, there exists $\jmath: L \hookrightarrow L^{\prime}$ with $\jmath \circ \imath=\imath^{\prime}$. We must show f is onto.

Suppose $f \in K[x]$ is irreducible. Then $\imath(f)$ splits (over L) and so $\imath^{\prime}(f)=\jmath(\imath(f))$ splits (over $\jmath(L)$). Hence $\imath^{\prime}: K \hookrightarrow \jmath(L)$ is an algebraic closure for K.

Finally, since L^{\prime} / K is algebraic, so is $L^{\prime} / \jmath(L)$. By (i) \Longrightarrow (iii) in I.D.3, $L^{\prime}=\jmath(L)$ as desired.
I.D.9. Definition. In view of the uniqueness theorem I.D.8, we shall write \bar{K} for the algebraic closure of K.

Note that, as a general rule, \bar{K} has no nontrivial algebraic extensions.
A glance ahead. Here are two key conditions on an algebraic extension L / K which we will take up next.

First, L / K will be called normal if the condition

$$
f \in K[x] \text { irreducible } \Longrightarrow f \text { splits over } L \text { or has no roots in } L
$$

holds. Equivalently, for each $\alpha \in L$ its minimal polynomial $m_{\alpha} \in$ $K[x]$ splits over L. This will link up nicely with our earlier use of "normal", for groups.

Second, an irreducible polynomial $f \in K[x]$ is separable if it has $\operatorname{deg}(f)$ distinct roots in a splitting field. Accordingly, we call the extension L / K separable if the minimal polynomial $m_{\alpha} \in K[x]$ of each $\alpha \in L$ is separable. This is not an issue in characteristic zero: everything is separable.

To link with the material we have just covered, there is a notion of separable algebraic closure: instead of taking the full \bar{K}, you take only the elements which have separable minimal polynomials. By the previous remark on characteristic zero, this does not affect $\overline{\mathbb{Q}}$.

