I.D. Algebraic closures

Recall that any polynomial $f \in \mathbb{Q}[x]$ splits over \mathbb{C} . Since the roots are algebraic over \mathbb{Q} , they belong to $\overline{\mathbb{Q}}$ (cf. I.A.18), hence f actually splits in $\overline{\mathbb{Q}}[x]$.

We have shown that every $f \in K[x]$, for any K, has a splitting field. But is there a field that does for K what $\overline{\mathbb{Q}}$ does for \mathbb{Q} — an *algebraic* extension that splits every polynomial at once? Indeed there is, and we will construct it.

I.D.1. DEFINITION. (i) *L* is **algebraically closed** if any $f \in L[x]$ splits over *L*.

(ii) L/K is an **algebraic closure** if L/K is algebraic and L is algebraically closed.

I.D.2. EXAMPLE. \mathbb{C}/\mathbb{R} is an algebraic closure, but \mathbb{C}/\mathbb{Q} is not: there are only countably many polynomials over \mathbb{Q} , hence countably many roots of such equations in \mathbb{C} ; but \mathbb{C} is uncountable, and the remaining elements must therefore be transcendental over \mathbb{Q} . Of course, the point is that $\overline{\mathbb{Q}}/\mathbb{Q}$ is an algebraic closure, and this argument shows that $\overline{\mathbb{Q}} \subset \mathbb{C}$ is a proper subfield.

I.D.3. PROPOSITION. The following are equivalent: (i) L/K is an algebraic closure. (ii) L/K is algebraic; and any irreducible $f \in K[x]$ splits over L. (iii) L/K is algebraic; and L'/L algebraic $\implies L' = L$.

PROOF. (i) \implies (ii): clear from the definition.

(ii) \Longrightarrow (iii): Given L'/L algebraic, L'/K is algebraic. Take $\alpha' \in L'$ and its (irreducible) minimal polynomial $m_{\alpha'} \in K[x]$. By (ii), $m_{\alpha'} = \prod_i (x - \lambda_i)$ splits over L, and so $\alpha' = \lambda_j$ for some j. That is, $\alpha' \in L$; conclude that L = L'.

(iii) \implies (i): Given $f \in L[x]$, there exists a splitting field extension L'/L. Since this is necessarily algebraic, we have L = L' by assumption, and f splits over L. So L is algebraically closed.

In particular, there are no nontrivial algebraic extensions of fields like \mathbb{C} and $\overline{\mathbb{Q}}$:

I.D.4. COROLLARY. If L is algebraically closed and L'/L is an algebraic extension, then L' = L.

PROOF. Take K = L in I.D.3(i), and conclude (iii).

If you had any lingering doubts about \mathbb{Q} being an algebraic closure of \mathbb{Q} , just take $L = \mathbb{C}$ and $K = \mathbb{Q}$ in the following:

I.D.5. COROLLARY. Given an extension L/K, with L algebraically closed and $L_0 := L_{alg/K} \subset L$ the subfield of elements algebraic over K (as in I.A.17). Then L_0 is an algebraic closure of K.

PROOF. Replace "L/K" in I.D.3(ii) by L_0/K , and conclude (i).

We now formulate the main existence result:

I.D.6. THEOREM. Any field K has an algebraic closure \bar{K} .

DOOMED PROOF (V. 1.0). Let

 $\mathcal{E} := \{ M \text{ field} \mid M \supset K, M/K \text{ algebraic} \},\$

partially ordered by inclusion. Given a chain C, consider the set $\mathcal{M}_{\mathcal{C}} := \bigcup_{M \in \mathcal{C}} M$. If $\alpha, \beta \in \mathcal{M}_{\mathcal{C}}$, there exists $M \in C$ with $\alpha, \beta \in M$ so that $\alpha\beta, \alpha^{-1}, \alpha + \beta \in M$; hence $\mathcal{M}_{\mathcal{C}}$ is a field. Moreover, $\mathcal{M}_{\mathcal{C}}/K$ is algebraic since any $\alpha \in \mathcal{M}_{\mathcal{C}}$ is contained in some M algebraic over K (α algebraic). Conclude that $\mathcal{M}_{\mathcal{C}} \in \mathcal{E}$ gives an upper bound for C; by Zorn, it follows that \mathcal{E} has a maximal element E. By "(iii) \Longrightarrow (i)" in I.D.3, E/K is an algebraic closure.

The problem is at the very beginning of the proof: what is meant by "ordered by inclusion"? That would work if all these *M*'s are subfields of a larger field — like an algebraic closure. Hmm. Some nice circular reasoning there.

There is a way to fix it by embedding all extensions inside the power set of $K[x] \times \mathbb{N}$, but I'd rather not; instead, we take a different tack.

PROOF (V. 2.0). Let

 $\mathcal{S} := \{(f, j) \mid f \in K[x] \text{ monic nonconstant, } 1 \le j \le \deg(f)\},\$

and define a corresponding set $X_S := \{x_j(f) \mid (f, j) \in S\}$ of formal indeterminates. For each monic nonconstant $f = x^n - a_1(f)x^{n-1} + \cdots + (-1)^n a_n(f)$ (with $a_i(f) \in K$), we write formally

$$\prod_{j=1}^{n} (x - x_j(f)) = x^n - \sigma_1(f) x^{n-1} + \dots + (-1)^n \sigma_n(f) \in K[X_{\mathcal{S}}][x],$$

where $\sigma_i(f) := \sum_{j_1 < \cdots < j_i} x_{j_1}(f) \cdots x_{j_i}(f)$ are elementary symmetric polynomials in the indeterminates, and put $t_i(f) := \sigma_i(f) - a_i(f)$. I claim that the ideal $\mathcal{I} := (\{t_i(f)\}_{f,i}) \subset K[X_S]$ is proper.

Suppose (on the contrary) that $1 \in \mathcal{I}$, i.e. that exist $r_{\ell} \in K[X_{\mathcal{S}}]$ and $t_{i_{\ell}}(f_{\ell})$ such that $r_1t_{i_1}(f_1) + \cdots + r_Nt_{i_N}(f_N) = 1$. Let L/K be a splitting field extension for $f_1 \cdots + f_N$, and write (in L[x])

$$f_{\ell} = \prod_{j=1}^{d_{\ell}} (x - \alpha_{\ell j}) = x^{d_{\ell}} - a_1(f_{\ell}) x^{d_{\ell}-1} + \dots + (-1)^{d_{\ell}} a_n(f_{\ell}),$$

where the $a_i(f_\ell)$'s are clearly elementary symmetric polynomials in the $\alpha_{\ell i}$'s for each ℓ . Consider the evaluation map

ev:
$$K[X_{\mathcal{S}}] \to L$$

 $k \mapsto \iota(k)$
 $x_j(f_\ell) \mapsto \alpha_{\ell j}$

{other indeterminates in X_S } \mapsto 0.

We have $ev(\sigma_i(f_\ell)) = a_i(f_\ell)$ hence $ev(t_i(f_\ell)) = 0$ ($1 \le \ell \le N$, $1 \le i \le n_\ell$), which gives

$$1 = \text{ev}(1) = \text{ev}(r_1)\text{ev}(t_{i_1}(f_1)) + \dots + \text{ev}(r_N)\text{ev}(t_{i_N}(f_N)) = 0,$$

which is absurd. So $1 \notin \mathcal{I}$, and \mathcal{I} is proper as claimed.

Recall from [**Algebra I**] that by Zorn's Lemma, there exists a maximal proper ideal \mathcal{J} such that $\mathcal{I} \subseteq \mathcal{J} \subsetneq K[X_{\mathcal{S}}]$. This gives a field $M := K[X_{\mathcal{S}}]/\mathcal{J}$, a quotient map $q \colon K[X_{\mathcal{S}}] \twoheadrightarrow M$, and (by composing q with $K \hookrightarrow K[X_{\mathcal{S}}]$) an embedding $j \colon K \hookrightarrow M$. Notice that

30

 $j(a_i(f)) = q(a_i(f)) = q(\sigma_i(f))$ since $\mathcal{I} \subset \mathcal{J}$. I claim that M/K is an algebraic closure of K. Equivalently, we can show that I.D.3(ii) holds: M/K is algebraic and splits all of our polynomials f.

For each $(f, j) \in S$, set $\beta_j(f) := q(x_j(f)) \in M$. We have

$$f = x^{n} - a_{1}(f)x^{n-1} + \dots + (-1)^{n}a_{n}(f) \in K[x] \setminus K$$

$$\implies j(f) = x^{n} - j(a_{1}(f))x^{n-1} + \dots + (-1)^{n}j(a_{n}(f)) \in M[x]$$

$$= x^{n} - q(\sigma_{1}(f))x^{n-1} + \dots + (-1)^{n}q(\sigma_{n}(f))$$

$$= q\left(x^{n} - \sigma_{1}(f)x^{n-1} + \dots + (-1)^{n}\sigma_{n}(f)\right)$$

$$= q\left(\prod_{j=1}^{n}(x - x_{j}(f))\right)$$

$$= \prod_{i=1}^{n}(x - \beta_{i}(f)),$$

so *f* splits over *M*. Moreover, since $K[X_S]$ is generated over *K* by the $x_j(f)$, *M* is generated over *K* by their images $\beta_j(f)$; being roots of *f* (for various *f*'s), these are algebraic over j(K). By I.A.21, *M*/*K* is algebraic.

Turning to the uniqueness of algebraic closures, we first need a

I.D.7. LEMMA. Let L/K be an algebraic extension, and K' an algebraically closed field. Then any embedding $\iota: K \hookrightarrow K'$ extends to $\jmath: L \hookrightarrow K'$.

PROOF. Define a partial order on

$$S := \left\{ (M, \theta) \middle| \begin{array}{l} M \subset L \text{ a subfield containing } K, \text{ and} \\ \theta \colon M \hookrightarrow K' \text{ an embedding with } \theta |_K = t \right\}$$

by $(M, \theta) \leq (M', \theta') \iff M \subset M'$ and $\theta'|_M = \theta$.

Let $C \subset S$ be any chain, and put $\mathcal{N} := \bigcup_{(M,\theta)\in C} M$. Each $n \in \mathcal{N}$ belongs to M for some $(M,\theta) \in C$, and we define a function $\phi \colon \mathcal{N} \to K'$ by $\phi(n) := \theta(n)$. This is well-defined (use $\theta'|_M = \theta$), injective (otherwise injectivity would fail on some M), and has an upper bound (namely, (\mathcal{N}, ϕ)). So Zorn hands us a maximal element (\mathcal{M}, Θ) for S.

I. GALOIS THEORY

Suppose $\mathcal{M} \subsetneq L$, and let $\alpha \in L \setminus \mathcal{M}$. Clearly α is algebraic over \mathcal{M} , with minimal polynomial m_{α} ; and so $\Theta(m_{\alpha})$ splits over K'. Pick a root $\beta \in K'$, so that $\Theta(m_{\alpha})(\beta) = 0$. Then I.C.14 produces an embedding $\Theta' : \mathcal{M}(\alpha) \hookrightarrow K'$ (sending $\alpha \mapsto \beta$) which extends Θ (hence ι). This contradicts maximality of (\mathcal{M}, Θ) , and we conclude that $\mathcal{M} = L$.

I.D.8. THEOREM. Given $\iota: K \hookrightarrow L$ and $\iota': K \hookrightarrow L'$ two algebraic closures for K. Then there exists an isomorphism $\jmath: L \xrightarrow{\cong} L'$ over K (i.e. such that $\jmath \circ \iota = \iota'$).

PROOF. By the Lemma, there exists $j: L \hookrightarrow L'$ with $j \circ i = i'$. We must show j is onto.

Suppose $f \in K[x]$ is irreducible. Then $\iota(f)$ splits (over *L*) and so $\iota'(f) = \iota(\iota(f))$ splits (over $\iota(L)$). Hence $\iota' \colon K \hookrightarrow \iota(L)$ is an algebraic closure for *K*.

Finally, since L'/K is algebraic, so is $L'/\jmath(L)$. By (i) \implies (iii) in I.D.3, $L' = \jmath(L)$ as desired.

I.D.9. DEFINITION. In view of the uniqueness theorem I.D.8, we shall write \overline{K} for *the* algebraic closure of *K*.

Note that, as a general rule, \bar{K} has no nontrivial algebraic extensions.

A glance ahead. Here are two key conditions on an algebraic extension L/K which we will take up next.

First, *L*/*K* will be called **normal** if the condition

 $f \in K[x]$ irreducible \implies f splits over L or has no roots in L

holds. Equivalently, for each $\alpha \in L$ its minimal polynomial $m_{\alpha} \in K[x]$ splits over *L*. This will link up nicely with our earlier use of "normal", for groups.

Second, an irreducible polynomial $f \in K[x]$ is **separable** if it has $\deg(f)$ distinct roots in a splitting field. Accordingly, we call the extension L/K separable if the minimal polynomial $m_{\alpha} \in K[x]$ of each $\alpha \in L$ is separable. This is not an issue in characteristic zero: everything is separable.

32

I.D. ALGEBRAIC CLOSURES

To link with the material we have just covered, there is a notion of *separable algebraic closure*: instead of taking the full \bar{K} , you take only the elements which have separable minimal polynomials. By the previous remark on characteristic zero, this does not affect \bar{Q} .