I. GALOIS THEORY

I.E. Multiple roots

Let *K* be a field. Given an irreducible polynomial $f \in K[x]$, there exists a splitting field extension L/K (cf. I.C.5). So we can write

$$f(x) = \prod_i (x - r_i)^{k_i}$$

in L[x], with the $r_i \in L$ distinct. If $k_i = 1$, then r_i is a **simple root**; otherwise, r_i is a **multiple root**.

When we vary the choice of splitting field extension, the multiplicities k_i do not change, since any two such extensions are isomorphic over *K* (cf. I.C.20). So the property of having simple roots, or of possessing a multiple root, may be regarded as a well-defined attribute of $f \in K[x]$, without reference to a splitting field.

Given distinct monic irreducible polynomials $f,g \in K[x]$, we have $gcd(f,g) \sim 1$ hence Ff + Gg = 1 for some $F, G \in K[x]$. Since $0 \neq 1$, f and g can have no common root in a splitting field for fg; and we arrive at the

I.E.1. PROPOSITION. *Given a finite collection of distinct monic irreducible polynomials, each with simple roots, their product has simple roots.*

But this still begs the question of when an irreducible polynomial has multiple roots!

The standard derivation.

One way to detect these is by taking derivatives. For any polynomial $f(x) = a_0 + a_1x + \cdots + a_nx^n \in K[x]$, set

$$f'$$
 (or Df) := $a_1 + 2a_2x + \dots + na_nx^{n-1}$,

thereby obtaining a *K*-linear map $D: K[x] \rightarrow K[x]$.

I.E.2. PROPOSITION. We have

$$f(x+h) \underset{(h^2)}{\equiv} f(x) + f'(x)h$$

in $K[x][h]/(h^2)$.

PROOF. By *K*-linearity, it suffices to check this on a monomial: $(x+h)^n = \sum_{j=0}^n {n \choose j} x^j h^{n-j} \underset{(h^2)}{\equiv} x^n + nx^{n-1}h.$

From this it follows that

$$(fg)(x+h) = f(x+h)g(x+h) \equiv (f+f'h)(g+g'h)$$

= $fg + (f'g+g'f)h$,

whence (fg)' = f'g + g'f.

I.E.3. THEOREM. Suppose $f \in K[x] \setminus \{0\}$, with splitting field L/K. Then the following are equivalent:

- (i) *f* has a multiple root (in L).
- (ii) $\exists \alpha \in L$ such that $f(\alpha) = f'(\alpha) = 0$.
- (iii) $\exists g \in K[x]$ of positive degree, with $g \mid f, f'$.
- (iv) $gcd(f, f') \approx 1$.

PROOF. Clearly (iii) and (iv) are equivalent.

 $\underbrace{\text{(i)} \Longrightarrow \text{(ii):}}_{(x-\alpha)^k F'} \text{ If } f = (x-\alpha)^k F \text{ with } k > 1 \text{, then } f' = k(x-\alpha)^{k-1} F + \frac{1}{(x-\alpha)^k F'} \text{.}$

(ii) \implies (iii): The minimal polynomial m_{α} over *K* divides *f*, *f*'.

<u>(iii)</u> \Longrightarrow (i): Since $g \mid f$ and f splits over L, so does g. That is, g has a root $\alpha \in L$; and writing $f = (x - \alpha)q$ in L[x], we get $f' = q + (x - \alpha)q'$. Together with $(x - \alpha) \mid g \mid f'$, this gives $(x - \alpha) \mid q$ hence $(x - \alpha)^2 \mid f$.

I.E.4. DEFINITION. (i) An irreducible polynomial $f \in K[x]$ is **separable** over *K* if *f* has no multiple roots. (Equivalently: *f* has deg(*f*) distinct roots in a splitting field; or gcd(*f*, *f*') ~ 1.)

(ii) An arbitrary polynomial $f \in K[x]$ is **separable** over *K* if each of its irreducible factors is.

(iii) *K* is **perfect** if every polynomial $f \in K[x]$ is separable over *K*.

It is immediate from the definition that any algebraically closed field is perfect (why?). Slightly less obvious is the I.E.5. COROLLARY. Any field of characteristic zero is perfect.

PROOF. Let $f \in K[x]$ be irreducible (hence of positive degree), with $gcd(f, f') \approx 1$. Since f is irreducible, the only other possibility¹⁵ is $gcd(f, f') \sim f$, i.e. $f \mid f'$. Since deg(f') < deg(f), this forces f' = 0.

But if char(K) = 0, then $f' = 0 \implies f \in K$, a contradiction. \Box

The argument shows more: if $f = \sum_{j=0}^{n} a_j x^j \in K[x]$ is irreducible, and char(K) = p > 0, then

(I.E.6)

$$f$$
 is inseparable $\iff f' = 0 \iff ja_j = 0 \in K \; (\forall j)$
 $\iff f(x) = b_0 + b_1 x^p + \dots + b_m x^{mp} = g(x^p)$
(for some $g \in K[x]$).

We would like to see if we can prove "perfection" of any positive characteristic fields. To see what can go wrong, let us first show that

I.E.7. THEOREM. $x^p - t$ is inseparable over $\mathbb{Z}_p(t)$.

We will first require a

I.E.8. LEMMA. Given $\alpha \in K$ and char(K) = p > 0, the polynomial $x^p - \alpha$ is either irreducible or a p^{th} power in K[x].

PROOF. Say $f := x^p - \alpha$ is not irreducible, factoring as GH over K, with G monic of degree $e \neq 0, p$. Let $\beta \in L$ be a root of G in a splitting field of f. Then $\beta^p = \alpha \implies GH = x^p - \alpha = x^p - \beta^p = (x - \beta)^p \implies G = (x - \beta)^e$. Moreover, since $G \in K[x]$, we have $\beta^e \in K$. Now $gcd(e, p) = 1 \implies ae + bp = 1$ (for some $a, b \in \mathbb{Z}$) $\implies \beta = (\beta^e)^a (\beta^p)^b \in K$. But then $x^p - \alpha = (x - \beta)^p$ works in K[x], i.e. f is a p^{th} power.

PROOF OF I.E.7. Suppose $x^p - t$ is reducible in $\mathbb{Z}_p(t)[x]$. By the Lemma, it takes the form $(x - \beta)^p$ in $\mathbb{Z}_p(t)[x]$, thus has a root $\beta \in$

¹⁵Why? Write f = gh, f' = gH; then irreducibility of f means that g or h is a unit (i.e. constant). We've assumed g (i.e. gcd(f, f')) nonconstant, so $h \in K^*$ and $g \sim f$.

 $\mathbb{Z}_p(t)$. That is, $t = \beta^p = (\frac{F(t)}{G(t)})^p = (\frac{a_0 + a_1t + \dots + a_nt^n}{b_0 + b_1t + \dots + b_mt^m})^p$ for some $F, G \in \mathbb{Z}_p[t], G \neq 0$. Then $tG^p = F^p$ reads

$$t(b_0^p + b_1^p t^p + \dots + b_m^p t^{mp}) = a_0^p + a_1^p t^p + \dots + a_n^p t^{np}$$

in $\mathbb{Z}_p[t]$, which forces every $b_i^p = 0$ hence every $b_i = 0$, which is absurd.

So $x^p - t$ is irreducible in $\mathbb{Z}_p(t)[x]$. But the Lemma *also* shows that it is a p^{th} power in a splitting field, hence has a multiple root.

The Frobenius map.

To prove any positive results about separability in positive characteristic, begin with the

I.E.9. PROPOSITION. For K of characteristic p > 0, the **Frobenius** map

$$\phi\colon K\to K$$
$$\alpha\mapsto \alpha^p$$

is an injective homomorphism with fixed point set equal to the prime subfield: that is, $K^{\phi} = \iota(\mathbb{Z}_p)$.

PROOF. Obviously $\phi(\alpha\beta) = \phi(\alpha)\phi(\beta)$ and $\phi(1) = 1$, while $\phi(\alpha + \beta) = \phi(\alpha) + \phi(\beta)$ works by the binomial formula/freshman's dream (p divides $\binom{p}{j}$ for j = 1, ..., p - 1). It is injective because it is a field homomorphism. The fixed elements contain the prime subfield $\iota(\mathbb{Z}_p)$ by little Fermat. There can't be more fixed elements because $x^p - x$ can have at most p distinct roots.

I.E.10. COROLLARY. If K is algebraic over $\mathbb{Z}_{p'}^{16}$ then $\phi \in \operatorname{Aut}(K)$.

PROOF. This is I.A.23; the argument is so simple and important we will repeat it. Given $\alpha \in K$, with minimal polynomial $m_{\alpha} \in \mathbb{Z}_p[x]$, and r any root of m_{α} in K, we have $m_{\alpha}(\phi(r)) = \phi(m_{\alpha}(r)) = 0$. So ϕ permutes the roots of m_{α} ; in particular, $\alpha \in \phi(K)$.

¹⁶Note that in this case char(K) = p, since it contains \mathbb{Z}_p and this is then its prime subfield.

I. GALOIS THEORY

I.E.11. PROPOSITION. Given K of characteristic p > 0, let $f(x) = g(x^p) \in K[x]$, with $g(x) = \sum_{j=0}^{m} b_j x^j$. Then f(x) is irreducible $\iff g(x)$ is irreducible and not all $b_i \in \phi(K)$.¹⁷

PROOF. (\implies): If $g = g_1g_2$, then $f(x) = g_1(x^p)g_2(x^p)$. If $b_i = c_i^p$ ($\forall i$), then $f = c_0^p + \cdots + c_m^p x^{mp} = (c_0 + c_1x + \cdots + c_mx^m)^p$. So neither can happen when f is irreducible.

(\Leftarrow): Suppose $f = f_1^{\ell_1} \cdots f_r^{\ell_r}$ as a product of relatively prime irreducibles, with $\ell_1 + \cdots + \ell_r > 1$. Note that $f(x) = g(x^p) \implies f' = 0$. We must show *g* is reducible or that all b_i are p^{th} powers.

<u>Case 1: r > 1</u>. Write $f = h_1h_2$, with h_1, h_2 coprime. This yields $H_1h_1 + H_2h_2 = 1$ and $0 = f' = h'_1h_2 + h'_2h_1$ in K[x], whence

$$H_1h'_1h_1 - H_2h'_2h_1 = H_1h'_1h_1 + H_2h'_1h_2 = h'_1(H_1h_1 + H_2h_2) = h'_1,$$

which shows that $h_1 \mid h'_1$. Since $\deg(h_1) > \deg(h'_1)$, we must have $h'_1 = 0$; the same argument gives $h'_2 = 0$. So $h_i(x) = g_i(x^p)$ for i = 1, 2 (and $g_i \in K[x]$), and $g = g_1g_2$ is reducible.

<u>Case 2: r = 1</u>. Here $f = f_1^{\ell}$, with $\ell > 1$ and f_1 irreducible. If $p \mid \ell$, then the coefficients of $f = (f_1^{\ell/p})^p$ are p^{th} powers by the usual freshman's dream. So suppose $p \nmid \ell$, and reason that that $0 = f' = \ell f_1' f_1^{\ell-1} \implies f_1' = 0 \implies f_1(x) = g_1(x^p)$ for some $g_1 \in K[x] \implies g(x^p) = f(x) = (g_1(x^p))^{\ell} \implies g = g_1^{\ell}$ is again reducible.

I.E.12. THEOREM. If K is algebraic over \mathbb{Z}_p , then K is perfect.

PROOF. Let $f \in K[x]$ be irreducible. If f is also inseparable, then by (I.E.6) we have $f(x) = g(x^p)$ for some $g \in K[x]$. By I.E.11, $g(x) = \sum_i b_i x^i$ is irreducible with not all $b_i \in \phi(K)$. This contradicts $\phi(K) = K$ (from I.E.10); so f cannot be inseparable.

I.E.13. COROLLARY. Every finite field is perfect.

38

¹⁷Alternatively, we could write K^p , since $\phi(K)$ comprises the p^{th} powers of elements in *K*.