I.E. Multiple roots

Let K be a field. Given an irreducible polynomial $f \in K[x]$, there exists a splitting field extension L / K (cf. I.C.5). So we can write

$$
f(x)=\prod_{i}\left(x-r_{i}\right)^{k_{i}}
$$

in $L[x]$, with the $r_{i} \in L$ distinct. If $k_{i}=1$, then r_{i} is a simple root; otherwise, r_{i} is a multiple root.

When we vary the choice of splitting field extension, the multiplicities k_{i} do not change, since any two such extensions are isomorphic over K (cf. I.C.20). So the property of having simple roots, or of possessing a multiple root, may be regarded as a well-defined attribute of $f \in K[x]$, without reference to a splitting field.

Given distinct monic irreducible polynomials $f, g \in K[x]$, we have $\operatorname{gcd}(f, g) \sim 1$ hence $F f+G g=1$ for some $F, G \in K[x]$. Since $0 \neq 1, f$ and g can have no common root in a splitting field for $f g$; and we arrive at the
I.E.1. Proposition. Given a finite collection of distinct monic irreducible polynomials, each with simple roots, their product has simple roots.

But this still begs the question of when an irreducible polynomial has multiple roots!

The standard derivation.

One way to detect these is by taking derivatives. For any polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in K[x]$, set

$$
f^{\prime}(\text { or } D f):=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}
$$

thereby obtaining a K-linear map $D: K[x] \rightarrow K[x]$.
I.E.2. Proposition. We have

$$
f(x+h) \underset{\left(h^{2}\right)}{\equiv} f(x)+f^{\prime}(x) h
$$

in $K[x][h] /\left(h^{2}\right)$.

Proof. By K-linearity, it suffices to check this on a monomial: $(x+h)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{j} h^{n-j} \underset{\left(h^{2}\right)}{\equiv} x^{n}+n x^{n-1} h$.

From this it follows that

$$
\begin{aligned}
(f g)(x+h) & =f(x+h) g(x+h) \underset{\left(h^{2}\right)}{\equiv}\left(f+f^{\prime} h\right)\left(g+g^{\prime} h\right) \\
& =f g+\left(f^{\prime} g+g^{\prime} f\right) h
\end{aligned}
$$

whence $(f g)^{\prime}=f^{\prime} g+g^{\prime} f$.
I.E.3. THEOREM. Suppose $f \in K[x] \backslash\{0\}$, with splitting field L / K. Then the following are equivalent:
(i) f has a multiple root (in L).
(ii) $\exists \alpha \in L$ such that $f(\alpha)=f^{\prime}(\alpha)=0$.
(iii) $\exists g \in K[x]$ of positive degree, with $g \mid f, f^{\prime}$.
(iv) $\operatorname{gcd}\left(f, f^{\prime}\right) \nsim 1$.

Proof. Clearly (iii) and (iv) are equivalent.
$(\mathrm{i}) \Longrightarrow$ (ii): If $f=(x-\alpha)^{k} F$ with $k>1$, then $f^{\prime}=k(x-\alpha)^{k-1} F+$ $(x-\alpha)^{k} F^{\prime}$.
(ii) \Longrightarrow (iii): The minimal polynomial m_{α} over K divides f, f^{\prime}.
(iii) \Longrightarrow (i): Since $g \mid f$ and f splits over L, so does g. That is, g has a root $\alpha \in L$; and writing $f=(x-\alpha) q$ in $L[x]$, we get $f^{\prime}=$ $q+(x-\alpha) q^{\prime}$. Together with $(x-\alpha)|g| f^{\prime}$, this gives $(x-\alpha) \mid q$ hence $(x-\alpha)^{2} \mid f$.
I.E.4. Definition. (i) An irreducible polynomial $f \in K[x]$ is separable over K if f has no multiple roots. (Equivalently: f has $\operatorname{deg}(f)$ distinct roots in a splitting field; or $\operatorname{gcd}\left(f, f^{\prime}\right) \sim 1$.)
(ii) An arbitrary polynomial $f \in K[x]$ is separable over K if each of its irreducible factors is.
(iii) K is perfect if every polynomial $f \in K[x]$ is separable over K.

It is immediate from the definition that any algebraically closed field is perfect (why?). Slightly less obvious is the
I.E.5. Corollary. Any field of characteristic zero is perfect.

Proof. Let $f \in K[x]$ be irreducible (hence of positive degree), with $\operatorname{gcd}\left(f, f^{\prime}\right) \nsim 1$. Since f is irreducible, the only other possibility ${ }^{15}$ is $\operatorname{gcd}\left(f, f^{\prime}\right) \sim f$, i.e. $f \mid f^{\prime}$. Since $\operatorname{deg}\left(f^{\prime}\right)<\operatorname{deg}(f)$, this forces $f^{\prime}=0$.

But if $\operatorname{char}(K)=0$, then $f^{\prime}=0 \Longrightarrow f \in K$, a contradiction.
The argument shows more: if $f=\sum_{j=0}^{n} a_{j} x^{j} \in K[x]$ is irreducible, and $\operatorname{char}(K)=p>0$, then

$$
\begin{gather*}
f \text { is inseparable } \Longleftrightarrow f^{\prime}=0 \Longleftrightarrow j a_{j}=0 \in K(\forall j) \\
\Longleftrightarrow f(x)=b_{0}+b_{1} x^{p}+\cdots+b_{m} x^{m p}=g\left(x^{p}\right) \tag{I.E.6}
\end{gather*}
$$

$$
\text { (for some } g \in K[x] \text {). }
$$

We would like to see if we can prove "perfection" of any positive characteristic fields. To see what can go wrong, let us first show that
I.E.7. Theorem. $x^{p}-t$ is inseparable over $\mathbb{Z}_{p}(t)$.

We will first require a
I.E.8. Lemma. Given $\alpha \in K$ and $\operatorname{char}(K)=p>0$, the polynomial $x^{p}-\alpha$ is either irreducible or a $p^{\text {th }}$ power in $K[x]$.

Proof. Say $f:=x^{p}-\alpha$ is not irreducible, factoring as $G H$ over K, with G monic of degree $e \neq 0, p$. Let $\beta \in L$ be a root of G in a splitting field of f. Then $\beta^{p}=\alpha \Longrightarrow G H=x^{p}-\alpha=x^{p}-\beta^{p}=$ $(x-\beta)^{p} \Longrightarrow G=(x-\beta)^{e}$. Moreover, since $G \in K[x]$, we have $\beta^{e} \in K$. Now $\operatorname{gcd}(e, p)=1 \Longrightarrow a e+b p=1$ (for some $a, b \in \mathbb{Z}$) $\Longrightarrow \beta=\left(\beta^{e}\right)^{a}\left(\beta^{p}\right)^{b} \in K$. But then $x^{p}-\alpha=(x-\beta)^{p}$ works in $K[x]$, i.e. f is a $p^{\text {th }}$ power.

Proof of I.E.7. Suppose $x^{p}-t$ is reducible in $\mathbb{Z}_{p}(t)[x]$. By the Lemma, it takes the form $(x-\beta)^{p}$ in $\mathbb{Z}_{p}(t)[x]$, thus has a root $\beta \in$

[^0]$\mathbb{Z}_{p}(t)$. That is, $t=\beta^{p}=\left(\frac{F(t)}{G(t)}\right)^{p}=\left(\frac{a_{0}+a_{1} t+\cdots+a_{n} t^{n}}{b_{0}+b_{1} t+\cdots+b_{m} t^{m}}\right)^{p}$ for some $F, G \in$ $\mathbb{Z}_{p}[t], G \neq 0$. Then $t G^{p}=F^{p}$ reads
$$
t\left(b_{0}^{p}+b_{1}^{p} t^{p}+\cdots+b_{m}^{p} t^{m p}\right)=a_{0}^{p}+a_{1}^{p} t^{p}+\cdots+a_{n}^{p} t^{n p}
$$
in $\mathbb{Z}_{p}[t]$, which forces every $b_{i}^{p}=0$ hence every $b_{i}=0$, which is absurd.

So $x^{p}-t$ is irreducible in $\mathbb{Z}_{p}(t)[x]$. But the Lemma also shows that it is a $p^{\text {th }}$ power in a splitting field, hence has a multiple root.

The Frobenius map.

To prove any positive results about separability in positive characteristic, begin with the
I.E.9. Proposition. For K of characteristic $p>0$, the Frobenius map

$$
\begin{aligned}
\phi: K & \rightarrow K \\
\alpha & \mapsto \alpha^{p}
\end{aligned}
$$

is an injective homomorphism with fixed point set equal to the prime subfield: that is, $K^{\phi}=\imath\left(\mathbb{Z}_{p}\right)$.

Proof. Obviously $\phi(\alpha \beta)=\phi(\alpha) \phi(\beta)$ and $\phi(1)=1$, while $\phi(\alpha+$ $\beta)=\phi(\alpha)+\phi(\beta)$ works by the binomial formula/freshman's dream (p divides $\binom{p}{j}$ for $j=1, \ldots, p-1$). It is injective because it is a field homomorphism. The fixed elements contain the prime subfield $\imath\left(\mathbb{Z}_{p}\right)$ by little Fermat. There can't be more fixed elements because $x^{p}-x$ can have at most p distinct roots.
I.E.10. COROLLARY. If K is algebraic over $\mathbb{Z}_{p}{ }^{16}$ then $\phi \in \operatorname{Aut}(K)$.

Proof. This is I.A.23; the argument is so simple and important we will repeat it. Given $\alpha \in K$, with minimal polynomial $m_{\alpha} \in$ $\mathbb{Z}_{p}[x]$, and r any root of m_{α} in K, we have $m_{\alpha}(\phi(r))=\phi\left(m_{\alpha}(r)\right)=0$. So ϕ permutes the roots of m_{α}; in particular, $\alpha \in \phi(K)$.

[^1]I.E.11. Proposition. Given K of characteristic $p>0$, let $f(x)=$ $g\left(x^{p}\right) \in K[x]$, with $g(x)=\sum_{j=0}^{m} b_{j} x^{j}$. Then $f(x)$ is irreducible \Longleftrightarrow $g(x)$ is irreducible and not all $b_{i} \in \phi(K) .{ }^{17}$

Proof. (\Longrightarrow) : If $g=g_{1} g_{2}$, then $f(x)=g_{1}\left(x^{p}\right) g_{2}\left(x^{p}\right)$. If $b_{i}=$ $c_{i}^{p}(\forall i)$, then $f=c_{0}^{p}+\cdots+c_{m}^{p} x^{m p}=\left(c_{0}+c_{1} x+\cdots+c_{m} x^{m}\right)^{p}$. So neither can happen when f is irreducible.
(\Longleftarrow) : Suppose $f=f_{1}^{\ell_{1}} \cdots f_{r}^{\ell_{r}}$ as a product of relatively prime irreducibles, with $\ell_{1}+\cdots+\ell_{r}>1$. Note that $f(x)=g\left(x^{p}\right) \Longrightarrow$ $f^{\prime}=0$. We must show g is reducible or that all b_{i} are $p^{\text {th }}$ powers.

Case 1: $r>1$. Write $f=h_{1} h_{2}$, with h_{1}, h_{2} coprime. This yields $H_{1} h_{1}+H_{2} h_{2}=1$ and $0=f^{\prime}=h_{1}^{\prime} h_{2}+h_{2}^{\prime} h_{1}$ in $K[x]$, whence

$$
H_{1} h_{1}^{\prime} h_{1}-H_{2} h_{2}^{\prime} h_{1}=H_{1} h_{1}^{\prime} h_{1}+H_{2} h_{1}^{\prime} h_{2}=h_{1}^{\prime}\left(H_{1} h_{1}+H_{2} h_{2}\right)=h_{1}^{\prime},
$$

which shows that $h_{1} \mid h_{1}^{\prime}$. Since $\operatorname{deg}\left(h_{1}\right)>\operatorname{deg}\left(h_{1}^{\prime}\right)$, we must have $h_{1}^{\prime}=0$; the same argument gives $h_{2}^{\prime}=0$. So $h_{i}(x)=g_{i}\left(x^{p}\right)$ for $i=1,2$ (and $\left.g_{i} \in K[x]\right)$, and $g=g_{1} g_{2}$ is reducible.

Case 2: $r=1$. Here $f=f_{1}^{\ell}$, with $\ell>1$ and f_{1} irreducible. If $p \mid \ell$, then the coefficients of $f=\left(f_{1}^{\ell / p}\right)^{p}$ are $p^{\text {th }}$ powers by the usual freshman's dream. So suppose $p \nmid \ell$, and reason that that $0=f^{\prime}=$ $\ell f_{1}^{\prime} f_{1}^{\ell-1} \Longrightarrow f_{1}^{\prime}=0 \Longrightarrow f_{1}(x)=g_{1}\left(x^{p}\right)$ for some $g_{1} \in K[x] \Longrightarrow$ $g\left(x^{p}\right)=f(x)=\left(g_{1}\left(x^{p}\right)\right)^{\ell} \Longrightarrow g=g_{1}^{\ell}$ is again reducible.
I.E.12. THEOREM. If K is algebraic over \mathbb{Z}_{p}, then K is perfect.

Proof. Let $f \in K[x]$ be irreducible. If f is also inseparable, then by (I.E.6) we have $f(x)=g\left(x^{p}\right)$ for some $g \in K[x]$. By I.E.11, $g(x)=$ $\sum_{i} b_{i} x^{i}$ is irreducible with not all $b_{i} \in \phi(K)$. This contradicts $\phi(K)=$ K (from I.E.10); so f cannot be inseparable.
I.E.13. Corollary. Every finite field is perfect.

[^2]
[^0]: ${ }^{15}$ Why? Write $f=g h, f^{\prime}=g H$; then irreducibility of f means that g or h is a unit (i.e. constant). We've assumed g (i.e. $\left.\operatorname{gcd}\left(f, f^{\prime}\right)\right)$ nonconstant, so $h \in K^{*}$ and $g \sim f$.

[^1]: ${ }^{16}$ Note that in this case char $(K)=p$, since it contains \mathbb{Z}_{p} and this is then its prime subfield.

[^2]: ${ }^{17}$ Alternatively, we could write K^{p}, since $\phi(K)$ comprises the $p^{\text {th }}$ powers of elements in K.

