
34 I. GALOIS THEORY

I.E. Multiple roots

Let K be a field. Given an irreducible polynomial f ∈ K[x], there
exists a splitting field extension L/K (cf. I.C.5). So we can write

f (x) = ∏i(x− ri)
ki

in L[x], with the ri ∈ L distinct. If ki = 1, then ri is a simple root;
otherwise, ri is a multiple root.

When we vary the choice of splitting field extension, the mul-
tiplicities ki do not change, since any two such extensions are iso-
morphic over K (cf. I.C.20). So the property of having simple roots,
or of possessing a multiple root, may be regarded as a well-defined
attribute of f ∈ K[x], without reference to a splitting field.

Given distinct monic irreducible polynomials f , g ∈ K[x], we
have gcd( f , g) ∼ 1 hence F f + Gg = 1 for some F, G ∈ K[x]. Since
0 6= 1, f and g can have no common root in a splitting field for f g;
and we arrive at the

I.E.1. PROPOSITION. Given a finite collection of distinct monic irre-
ducible polynomials, each with simple roots, their product has simple roots.

But this still begs the question of when an irreducible polynomial
has multiple roots!

The standard derivation.

One way to detect these is by taking derivatives. For any poly-
nomial f (x) = a0 + a1x + · · ·+ anxn ∈ K[x], set

f ′ (or D f ) := a1 + 2a2x + · · ·+ nanxn−1,

thereby obtaining a K-linear map D : K[x]→ K[x].

I.E.2. PROPOSITION. We have

f (x + h) ≡
(h2)

f (x) + f ′(x)h

in K[x][h]/(h2).
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PROOF. By K-linearity, it suffices to check this on a monomial:
(x + h)n = ∑n

j=0 (
n
j)xjhn−j ≡

(h2)
xn + nxn−1h. �

From this it follows that

( f g)(x + h) = f (x + h)g(x + h) ≡
(h2)

( f + f ′h)(g + g′h)

= f g + ( f ′g + g′ f )h,

whence ( f g)′ = f ′g + g′ f .

I.E.3. THEOREM. Suppose f ∈ K[x] \ {0}, with splitting field L/K.
Then the following are equivalent:

(i) f has a multiple root (in L).
(ii) ∃ α ∈ L such that f (α) = f ′(α) = 0.

(iii) ∃ g ∈ K[x] of positive degree, with g | f , f ′.
(iv) gcd( f , f ′) � 1.

PROOF. Clearly (iii) and (iv) are equivalent.

(i) =⇒ (ii): If f = (x − α)kF with k > 1, then f ′ = k(x − α)k−1F +

(x− α)kF′.

(ii) =⇒ (iii): The minimal polynomial mα over K divides f , f ′.

(iii) =⇒ (i): Since g | f and f splits over L, so does g. That is, g
has a root α ∈ L; and writing f = (x − α)q in L[x], we get f ′ =
q + (x − α)q′. Together with (x − α) | g | f ′, this gives (x − α) | q
hence (x− α)2 | f . �

I.E.4. DEFINITION. (i) An irreducible polynomial f ∈ K[x] is sep-
arable over K if f has no multiple roots. (Equivalently: f has deg( f )
distinct roots in a splitting field; or gcd( f , f ′) ∼ 1.)

(ii) An arbitrary polynomial f ∈ K[x] is separable over K if each of
its irreducible factors is.

(iii) K is perfect if every polynomial f ∈ K[x] is separable over K.

It is immediate from the definition that any algebraically closed
field is perfect (why?). Slightly less obvious is the
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I.E.5. COROLLARY. Any field of characteristic zero is perfect.

PROOF. Let f ∈ K[x] be irreducible (hence of positive degree),
with gcd( f , f ′) � 1. Since f is irreducible, the only other possibility15

is gcd( f , f ′) ∼ f , i.e. f | f ′. Since deg( f ′) < deg( f ), this forces
f ′ = 0.

But if char(K) = 0, then f ′ = 0 =⇒ f ∈ K, a contradiction. �

The argument shows more: if f = ∑n
j=0 ajxj ∈ K[x] is irreducible,

and char(K) = p > 0, then

f is inseparable ⇐⇒ f ′ = 0 ⇐⇒ jaj = 0 ∈ K (∀j)

⇐⇒ f (x) = b0 + b1xp + · · ·+ bmxmp = g(xp)

(for some g ∈ K[x]).

(I.E.6)

We would like to see if we can prove “perfection” of any positive
characteristic fields. To see what can go wrong, let us first show that

I.E.7. THEOREM. xp − t is inseparable over Zp(t).

We will first require a

I.E.8. LEMMA. Given α ∈ K and char(K) = p > 0, the polynomial
xp − α is either irreducible or a pth power in K[x].

PROOF. Say f := xp − α is not irreducible, factoring as GH over
K, with G monic of degree e 6= 0, p. Let β ∈ L be a root of G in a
splitting field of f . Then βp = α =⇒ GH = xp − α = xp − βp =

(x − β)p =⇒ G = (x − β)e. Moreover, since G ∈ K[x], we have
βe ∈ K. Now gcd(e, p) = 1 =⇒ ae + bp = 1 (for some a, b ∈ Z)
=⇒ β = (βe)a(βp)b ∈ K. But then xp − α = (x− β)p works in K[x],
i.e. f is a pth power. �

PROOF OF I.E.7. Suppose xp − t is reducible in Zp(t)[x]. By the
Lemma, it takes the form (x − β)p in Zp(t)[x], thus has a root β ∈

15Why? Write f = gh, f ′ = gH; then irreducibility of f means that g or h is a
unit (i.e. constant). We’ve assumed g (i.e. gcd( f , f ′)) nonconstant, so h ∈ K∗ and
g ∼ f .
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Zp(t). That is, t = βp = ( F(t)
G(t))

p = ( a0+a1t+···+antn

b0+b1t+···+bmtm )p for some F, G ∈
Zp[t], G 6= 0. Then tGp = Fp reads

t(bp
0 + bp

1 tp + · · ·+ bp
mtmp) = ap

0 + ap
1 tp + · · ·+ ap

ntnp

in Zp[t], which forces every bp
i = 0 hence every bi = 0, which is

absurd.
So xp− t is irreducible in Zp(t)[x]. But the Lemma also shows that

it is a pth power in a splitting field, hence has a multiple root. �

The Frobenius map.

To prove any positive results about separability in positive char-
acteristic, begin with the

I.E.9. PROPOSITION. For K of characteristic p > 0, the Frobenius
map

φ : K → K

α 7→ αp

is an injective homomorphism with fixed point set equal to the prime sub-
field: that is, Kφ = ı(Zp).

PROOF. Obviously φ(αβ) = φ(α)φ(β) and φ(1) = 1, while φ(α +

β) = φ(α) + φ(β) works by the binomial formula/freshman’s dream
(p divides (p

j) for j = 1, . . . , p − 1). It is injective because it is a
field homomorphism. The fixed elements contain the prime subfield
ı(Zp) by little Fermat. There can’t be more fixed elements because
xp − x can have at most p distinct roots. �

I.E.10. COROLLARY. If K is algebraic over Zp,16 then φ ∈ Aut(K).

PROOF. This is I.A.23; the argument is so simple and important
we will repeat it. Given α ∈ K, with minimal polynomial mα ∈
Zp[x], and r any root of mα in K, we have mα(φ(r)) = φ(mα(r)) = 0.
So φ permutes the roots of mα; in particular, α ∈ φ(K). �

16Note that in this case char(K) = p, since it contains Zp and this is then its prime
subfield.
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I.E.11. PROPOSITION. Given K of characteristic p > 0, let f (x) =

g(xp) ∈ K[x], with g(x) = ∑m
j=0 bjxj. Then f (x) is irreducible ⇐⇒

g(x) is irreducible and not all bi ∈ φ(K).17

PROOF. ( =⇒ ): If g = g1g2, then f (x) = g1(xp)g2(xp). If bi =

cp
i (∀i), then f = cp

0 + · · · + cp
mxmp = (c0 + c1x + · · · + cmxm)p. So

neither can happen when f is irreducible.
( ⇐= ): Suppose f = f `1

1 · · · f `r
r as a product of relatively prime

irreducibles, with `1 + · · · + `r > 1. Note that f (x) = g(xp) =⇒
f ′ = 0. We must show g is reducible or that all bi are pth powers.

Case 1: r > 1. Write f = h1h2, with h1, h2 coprime. This yields
H1h1 + H2h2 = 1 and 0 = f ′ = h′1h2 + h′2h1 in K[x], whence

H1h′1h1 − H2h′2h1 = H1h′1h1 + H2h′1h2 = h′1(H1h1 + H2h2) = h′1,

which shows that h1 | h′1. Since deg(h1) > deg(h′1), we must have
h′1 = 0; the same argument gives h′2 = 0. So hi(x) = gi(xp) for
i = 1, 2 (and gi ∈ K[x]), and g = g1g2 is reducible.

Case 2: r = 1. Here f = f `1 , with ` > 1 and f1 irreducible. If
p | `, then the coefficients of f = ( f `/p

1 )p are pth powers by the usual
freshman’s dream. So suppose p - `, and reason that that 0 = f ′ =
` f ′1 f `−1

1 =⇒ f ′1 = 0 =⇒ f1(x) = g1(xp) for some g1 ∈ K[x] =⇒
g(xp) = f (x) = (g1(xp))` =⇒ g = g`1 is again reducible. �

I.E.12. THEOREM. If K is algebraic over Zp, then K is perfect.

PROOF. Let f ∈ K[x] be irreducible. If f is also inseparable, then
by (I.E.6) we have f (x) = g(xp) for some g ∈ K[x]. By I.E.11, g(x) =
∑i bixi is irreducible with not all bi ∈ φ(K). This contradicts φ(K) =
K (from I.E.10); so f cannot be inseparable. �

I.E.13. COROLLARY. Every finite field is perfect.

17Alternatively, we could write Kp, since φ(K) comprises the pth powers of ele-
ments in K.


