I.H. Finite fields

Recall that if $f \in \mathbb{Z}_{p}[x]$ is an irreducible polynomial of degree n, then $\mathbb{Z}_{p}[x] /(f(x))=: L$ gives a field with p^{n} elements. This will still be the easiest way to construct them, but thinking a priori in terms of splitting fields gives a much more powerful result:
I.H.1. Theorem. Given $n \in \mathbb{N}$ and p prime, (i) there exists a field L with $|L|=p^{n}$, and (ii) this is unique up to isomorphism.

Proof. (i) Let $f:=x^{p^{n}}-x$ and L be a SFE $/ \mathbb{Z}_{p}$. Since $f^{\prime}=$ $-1, \operatorname{gcd}\left(f, f^{\prime}\right)=1$ and f has p^{n} distinct roots in L by I.E.3. Since the Frobenius map ϕ is a homomorphism, the set $\mathcal{R}_{f}=\{\alpha \in L \mid$ $\left.\phi^{n}(\alpha)=\alpha\right\}$ of these roots is actually a subfield of L. As it contains all the roots, $\mathcal{R}_{f} / \mathbb{Z}_{p}$ is itself a SFE for f, whence $\mathcal{R}_{f}=L$.
(ii) Let K be another such field. Then $\left|K^{*}\right|=p^{n}-1$, and so for every $k \in K^{*}$, we have $k^{p^{n}-1}=1$ hence $k^{p^{n}}=k$. Thus f has p^{n} distinct roots in K, and is a splitting field for f over \mathbb{Z}_{p}. So $K \cong L$.

It is worth pausing to remember here that, since a finite field is a vector space over its prime subfield (which is some \mathbb{Z}_{p}), it must have order a power of p. The standard notation is to write \mathbb{F}_{q}, or " $\mathrm{GF}(q)$ " for "Galois", for the finite field of order $q=p^{n}$. Note that instead of the "huge" polynomial $x^{q}-x$ in the above proof, we can take any irreducible $f \in \mathbb{Z}_{p}[x]$ of degree n; and by virtue of having degree n over $\mathbb{Z}_{p}, L:=\mathbb{Z}_{p}[x] /(f(x))$ must be isomorphic to \mathbb{F}_{q} by I.H.1(ii).

So in a way we have classified (and suggested how to construct) all finite fields, though we have yet to elucidate their structure.

I.H.2. Corollary. All extensions of finite fields are Galois.

PROOF. Given $|L|<\infty$, with $\operatorname{char}(L)=p$ and prime subfield \mathbb{Z}_{p}, the extension L / \mathbb{Z}_{p} is separable because \mathbb{Z}_{p} is perfect. It is normal (by I.G.4) because the subgroup $\langle\phi\rangle \leq \operatorname{Aut}(L)$ generated by Frobenius has fixed field \mathbb{Z}_{p} (cf. I.E.9-I.E.10). Finally, top-to-intermediate sub-extensions in a Galois extension are always Galois (see the proof of I.G.22(i)).

Now recall that for $|L|=p^{n}<\infty, L^{*}$ is cyclic $\left(\cong \mathbb{Z}_{p^{n}-1}\right)$, with generator α. If L / K is an extension, it follows at once that $K^{*}\left(\leq L^{*}\right)$ and (the quotient group) L^{*} / K^{*} are cyclic, and that $L=K(\alpha)$. (That is, any extension of finite fields is simple.) We can use this to prove

I.H.3. THEOREM. $\operatorname{Aut}\left(L / \mathbb{Z}_{p}\right)=\langle\phi\rangle \cong \mathbb{Z}_{n}$.

Proof. Clearly $L=\mathbb{Z}_{p}(\alpha)$, and every $\phi^{k} \in \operatorname{Aut}\left(L / \mathbb{Z}_{p}\right)$. If $\phi^{k}=$ id_{L}, then $\phi^{k}(\alpha)=\alpha \Longrightarrow \phi^{k}\left(\alpha^{d}\right)=\alpha^{d}(\forall d) \Longrightarrow$ every $\ell \in L$ is a root of $f=x^{p^{k}}-x \Longrightarrow|L| \leq p^{k} \Longrightarrow k \geq n$. We also know that $\phi^{n}=\mathrm{id}_{L} ;$ and so $1, \phi, \ldots, \phi^{n-1}$ are distinct. But since L / \mathbb{Z}_{p} is Galois, there are exactly $\left[L: \mathbb{Z}_{p}\right]=n$ automorphisms.
I.H.4. Corollary. Given an extension L / K, with $|L|<\infty$, we have $\operatorname{Aut}(L / K)=\left\langle\phi^{\left[K: \mathbb{Z}_{p}\right]}\right\rangle \cong \mathbb{Z}_{[L: K]}$. (In particular, any extension of finite fields has cyclic Galois group.)

Proof. $\operatorname{Aut}(L / K)$ is a subgroup of the cyclic group $\operatorname{Aut}\left(L / \mathbb{Z}_{p}\right)=$ $\langle\phi\rangle \cong \mathbb{Z}_{\left[L: \mathbb{Z}_{p}\right]}$, and $|\operatorname{Aut}(L / K)|=[L: K]$ by the Galois correspondence (cf. I.G.6).
I.H.5. COROLLARY. Every intermediate field in $\mathbb{F}_{p^{n}} / \mathbb{Z}_{p}$ has order p^{m} for some $m \mid n$; and there is exactly one intermediate field of each of these orders.

Proof. Given $K \subseteq \mathbb{F}_{p^{n}}$, applying the Tower Law gives $m=$ $\left[K: \mathbb{Z}_{p}\right] \mid\left[\mathbb{F}_{p^{n}}: \mathbb{Z}_{p}\right]=n$, and $|K|=p^{m}$.

The Galois correspondence gives $\left|\operatorname{Aut}\left(\mathbb{F}_{p^{n}} / K\right)\right|=n / m$. There is only one subgroup of $\operatorname{Aut}\left(\mathbb{F}_{p^{n}} / \mathbb{Z}_{p}\right) \cong \mathbb{Z}_{n}$ of this order; since it is unique, so is K.

Since we get explicit constructions of larger finite fields from irreducible polynomials over smaller ones, ${ }^{28}$ it seems interesting to try to count these irreducible polynomials (especially over \mathbb{Z}_{p}). That

[^0]there must exist irreducible polynomials of every degree over every finite field is clear: just take the extension $\mathbb{F}_{q^{d}} / \mathbb{F}_{q}$ guaranteed by I.H. $5\left(q=p^{m}, n=m d\right)$, which is cyclic with generator α, whence $m_{\alpha} \in \mathbb{F}_{q}[x]$ is irreducible of degree d. So at least we know we are not counting the empty set.

We shall begin with some properties of the Möbius function

$$
\mu: \mathbb{Z}_{>0} \rightarrow\{-1,0,1\}
$$

which is defined by:

- $\mu(1)=1$;
- $\mu(a)=0 \Longleftrightarrow a$ is not squarefree; and otherwise
- $\mu\left(p_{1} \cdots p_{n}\right)=(-1)^{n}$ (where p_{1}, \ldots, p_{n} are distinct).

Clearly, μ is multiplicative in the sense that

$$
\text { - } \mu\left(a_{1} a_{2}\right)=\mu\left(a_{1}\right) \mu\left(a_{2}\right) \text { if } \operatorname{gcd}\left(a_{1}, a_{2}\right)=1
$$

Moreover, for any $b \in \mathbb{Z}_{>1}$ it satisfies

$$
\text { - } \sum_{a \mid b} \mu(a)=0
$$

since writing $b=p_{1}^{r_{1}} \cdots p_{s}^{r_{s}}$ with p_{1}, \ldots, p_{s} distinct, we have

$$
\sum_{a \mid b} \mu(a)=\sum_{a \mid p_{1} \cdots p_{s}} \mu(a)=\sum_{i=1}^{s}\binom{s}{i}(-1)^{i}=(1-1)^{s}=0 .
$$

The following result is very useful in number theory and combinatorics; here it is the key to the counting formula I.H. 7 that follows.
I.H.6. Lemma (Möbius inversion formula). Given a ring R and a function $f: \mathbb{Z}_{>0} \rightarrow R$, set $g(n):=\sum_{d \mid n} f(d)$; then we may recover f by $f(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)$.

Proof. First observe that for $e \leq n$ dividing n,

$$
\sum_{\substack{d \mid n \text { such } \\ \text { that } e \mid d}} \mu\left(\frac{n}{d}\right)=\sum_{a \left\lvert\, \frac{n}{e}\right.} \mu(a)= \begin{cases}1, & e=n \\ 0, & e<n\end{cases}
$$

since $\left.e|d| n \Longrightarrow \frac{n}{d} \right\rvert\, \frac{n}{e}$. It follows that

$$
\sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \sum_{e \mid d} f(e)=\sum_{e \mid n} f(e) \sum_{\substack{d \mid n \text { such } \\ \text { that } e \mid d}} \mu\left(\frac{e}{d}\right)=f(n)
$$

as desired.
I.H.7. THEOREM (Gauss). The number $N(d, q)$ of monic irreducible polynomials of degree d in $\mathbb{F}_{q}[x]$, where $q=p^{m}$, is given by

$$
N(d, q)=\frac{1}{d} \sum_{e \mid d} \mu\left(\frac{d}{e}\right) q^{e}
$$

Proof. Write $K=\mathbb{F}_{q}$ and let L / K be an extension of degree d; then (by the proof of I.H.1, since $|L|=q^{d}$) it is also a SFE for $f=$ $x^{q^{d}}-x \in K[x]$, with $L \cong \mathbb{F}_{p^{m d}}$. Clearly f has no multiple roots (because $\mathcal{R}_{f}=L$ or $f^{\prime}=-1$, take your pick), and thus no repeated factors in $K[x]$. I claim that the monic irreducible factors of f in $K[x]$ are precisely the monic irreducible polynomials in $K[x]$ of degrees dividing d. If this is true, then the degree of f equals the sum of degrees of these polynomials: $q^{d}=\sum_{\delta \mid d} N(\delta, q) \delta$. Möbius inversion gives $N(d, q) d=\sum_{e \mid d} \mu\left(\frac{d}{e}\right) q^{e}$.

To prove the claim, let $g \mid f$ be a monic irreducible factor in $K[x]$, with $\operatorname{deg}(g)=: \delta$, and $\alpha \in L$ a root of g; then $[K(\alpha): K]=\delta$ hence $\delta \mid d$. Conversely, if $g \in K[x]$ is a monic irreducible polynomial of degree $\delta \mid d$, the field $K^{\prime}:=K[x] /(g(x))$ has order $\left|K^{\prime}\right|=q^{\left[K^{\prime}: K\right]}=q^{\delta}$, hence is $\cong \mathbb{F}_{p^{m \delta}}$. So I.H. 5 gives an embedding $\imath: K^{\prime} \hookrightarrow L$, and writing $\imath(\bar{x})=: \alpha \in L$, we have $m_{\alpha}=g \in K[x]$. Since $\alpha \in L$, the proof of I.H. 1 gives $f(\alpha)=0$; and so m_{α} (hence g) divides f.

We know that $N(d, q)$ is always positive from the existence argument (for irreducible polynomials) above; if so moved, you could try to check this from the formula too. To conclude here are a few light computations.
I.H.8. COROLLARY. The number of irreducible monic polynomials of degree d in $\mathbb{Z}_{p}[x]$ is $N(d, p)=\frac{1}{d} \sum_{e \mid d} \mu\left(\frac{d}{e}\right) p^{e}$. In particular, there are $\frac{1}{2} p(p-1)$ irreducible quadratics, and $\frac{1}{3} p(p-1)(p+1)$ irreducible cubics.
I.H.9. EXAMPLE. How many irreducible monic polynomials of degree 8 are there over \mathbb{Z}_{2} ? Since μ is 0 on all divisors of 8 except 1 and 2 , we get $\frac{1}{8}\left(2^{8}-2^{4}\right)=30$. So you have that many options
for constructing $\mathbb{F}_{2^{8}}$, which is used in AES (Advanced Encryption Standard).
I.H.10. Example. What can we say about the polynomial $g=$ $x^{p}-x-1 \in \mathbb{Z}_{p}[x]$? It has no roots in \mathbb{Z}_{p}, since $g(a)=-1\left(\forall a \in \mathbb{Z}_{p}\right)$. Let L / \mathbb{Z}_{p} be a splitting field, and $\alpha \in L$ a root. Then for $b \in \mathbb{Z}_{p}$, we have

$$
(\alpha+b)^{p}-(\alpha+b)-1=\alpha^{p}+b-\alpha-b-1=0
$$

making $\alpha, \alpha+1, \ldots, \alpha+p-1$ all roots, and $L=\mathbb{Z}_{p}(\alpha)$.
Now suppose g factors in $\mathbb{Z}_{p}[x]$, viz. $g=g_{1} g_{2}$. Then there is a subset $\mathcal{S} \subset \mathbb{Z}_{p}$ such that $g_{1}=\prod_{b \in \mathcal{S}}(x-\alpha-b)$, and the coefficient of $x^{|\mathcal{S}|-1}$ in g_{1}, which must belong to \mathbb{Z}_{p}, is $-\sum_{b \in \mathcal{S}}(\alpha+b)=-|\mathcal{S}| \alpha+$ $\left\{\right.$ element of $\left.\mathbb{Z}_{p}\right\}$. This yields a contradiction unless $|\mathcal{S}|=0$ or p, in which case g_{1} or g_{2} has degree 0 .

So g is irreducible, and we conclude that $\left[L: \mathbb{Z}_{p}\right]=\operatorname{deg}(g)=p$, so that $\mathbb{Z}_{p}[x] /(g(x))$ gives an explicit construction of $\mathbb{F}_{p^{p}}$. We should add here that since g is separable, L / \mathbb{Z}_{p} is Galois, and $\operatorname{Gal}_{\mathbb{Z}_{p}}(g) \cong$ \mathbb{Z}_{p} (the only group of order p acting transitively on the roots).

Incidentally, the same argument applies to $x^{p}-x-a$ for each $a \in \mathbb{Z}_{p}^{*}$. But we have only scratched the surface of the irreducible polynomials of degree p over \mathbb{Z}_{p} - there are $N(p, p)=p^{p-1}-1$ of them, out of $p^{p}(p-1)$ total polynomials of that degree.

[^0]: ${ }^{28}$ These explicit realizations are used, among other places, in the construction of error-correcting codes and in cryptography, since it is easy for computers to work modulo a polynomial.

