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I.H. Finite fields

Recall that if f ∈ Zp[x] is an irreducible polynomial of degree n,
then Zp[x]/( f (x)) =: L gives a field with pn elements. This will still
be the easiest way to construct them, but thinking a priori in terms of
splitting fields gives a much more powerful result:

I.H.1. THEOREM. Given n ∈ N and p prime, (i) there exists a field L
with |L| = pn, and (ii) this is unique up to isomorphism.

PROOF. (i) Let f := xpn − x and L be a SFE/Zp. Since f ′ =

−1, gcd( f , f ′) = 1 and f has pn distinct roots in L by I.E.3. Since
the Frobenius map φ is a homomorphism, the set R f = {α ∈ L |
φn(α) = α} of these roots is actually a subfield of L. As it contains all
the roots,R f /Zp is itself a SFE for f , whenceR f = L.

(ii) Let K be another such field. Then |K∗| = pn − 1, and so for
every k ∈ K∗, we have kpn−1 = 1 hence kpn

= k. Thus f has pn distinct
roots in K, and is a splitting field for f over Zp. So K ∼= L. �

It is worth pausing to remember here that, since a finite field is a
vector space over its prime subfield (which is some Zp), it must have
order a power of p. The standard notation is to write Fq, or “GF(q)”
for “Galois”, for the finite field of order q = pn. Note that instead of
the “huge” polynomial xq − x in the above proof, we can take any
irreducible f ∈ Zp[x] of degree n; and by virtue of having degree n
over Zp, L := Zp[x]/( f (x)) must be isomorphic to Fq by I.H.1(ii).

So in a way we have classified (and suggested how to construct)
all finite fields, though we have yet to elucidate their structure.

I.H.2. COROLLARY. All extensions of finite fields are Galois.

PROOF. Given |L| < ∞, with char(L) = p and prime subfield Zp,
the extension L/Zp is separable because Zp is perfect. It is normal
(by I.G.4) because the subgroup 〈φ〉 ≤ Aut(L) generated by Frobe-
nius has fixed field Zp (cf. I.E.9-I.E.10). Finally, top-to-intermediate
sub-extensions in a Galois extension are always Galois (see the proof
of I.G.22(i)). �
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Now recall that for |L| = pn < ∞, L∗ is cyclic (∼= Zpn−1), with
generator α. If L/K is an extension, it follows at once that K∗ (≤ L∗)
and (the quotient group) L∗/K∗ are cyclic, and that L = K(α). (That
is, any extension of finite fields is simple.) We can use this to prove

I.H.3. THEOREM. Aut(L/Zp) = 〈φ〉 ∼= Zn.

PROOF. Clearly L = Zp(α), and every φk ∈ Aut(L/Zp). If φk =

idL, then φk(α) = α =⇒ φk(αd) = αd (∀d) =⇒ every ` ∈ L is a
root of f = xpk − x =⇒ |L| ≤ pk =⇒ k ≥ n. We also know that
φn = idL; and so 1, φ, . . . , φn−1 are distinct. But since L/Zp is Galois,
there are exactly [L:Zp] = n automorphisms. �

I.H.4. COROLLARY. Given an extension L/K, with |L| < ∞, we have
Aut(L/K) = 〈φ[K:Zp]〉 ∼= Z[L:K]. (In particular, any extension of finite
fields has cyclic Galois group.)

PROOF. Aut(L/K) is a subgroup of the cyclic group Aut(L/Zp) =

〈φ〉 ∼= Z[L:Zp], and |Aut(L/K)| = [L:K] by the Galois correspon-
dence (cf. I.G.6). �

I.H.5. COROLLARY. Every intermediate field in Fpn /Zp has order pm

for some m|n; and there is exactly one intermediate field of each of these
orders.

PROOF. Given K ⊆ Fpn , applying the Tower Law gives m =

[K:Zp]
∣∣[Fpn :Zp] = n, and |K| = pm.

The Galois correspondence gives |Aut(Fpn /K)| = n/m. There is
only one subgroup of Aut(Fpn /Zp) ∼= Zn of this order; since it is
unique, so is K. �

Since we get explicit constructions of larger finite fields from irre-
ducible polynomials over smaller ones,28 it seems interesting to try
to count these irreducible polynomials (especially over Zp). That

28These explicit realizations are used, among other places, in the construction of
error-correcting codes and in cryptography, since it is easy for computers to work
modulo a polynomial.



I.H. FINITE FIELDS 67

there must exist irreducible polynomials of every degree over ev-
ery finite field is clear: just take the extension Fqd /Fq guaranteed
by I.H.5 (q = pm, n = md), which is cyclic with generator α, whence
mα ∈ Fq[x] is irreducible of degree d. So at least we know we are not
counting the empty set.

We shall begin with some properties of the Möbius function

µ : Z>0 → {−1, 0, 1},

which is defined by:

• µ(1) = 1;
• µ(a) = 0 ⇐⇒ a is not squarefree; and otherwise
• µ(p1 · · · pn) = (−1)n (where p1, . . . , pn are distinct).

Clearly, µ is multiplicative in the sense that

• µ(a1a2) = µ(a1)µ(a2) if gcd(a1, a2) = 1.

Moreover, for any b ∈ Z>1 it satisfies

• ∑a|b µ(a) = 0,

since writing b = pr1
1 · · · p

rs
s with p1, . . . , ps distinct, we have

∑a|b µ(a) = ∑a|p1···ps µ(a) = ∑s
i=1 (

s
i)(−1)i = (1− 1)s = 0.

The following result is very useful in number theory and combina-
torics; here it is the key to the counting formula I.H.7 that follows.

I.H.6. LEMMA (Möbius inversion formula). Given a ring R and a
function f : Z>0 → R, set g(n) := ∑d|n f (d); then we may recover f by
f (n) = ∑d|n µ(n

d )g(d).

PROOF. First observe that for e ≤ n dividing n,

∑
d|n such
that e|d

µ
(n

d

)
= ∑

a|ne

µ(a) =

{
1, e = n
0, e < n.

since e | d | n =⇒ n
d |

n
e . It follows that
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)
g(d) = ∑
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as desired. �

I.H.7. THEOREM (Gauss). The number N(d, q) of monic irreducible
polynomials of degree d in Fq[x], where q = pm, is given by

N(d, q) = 1
d ∑

e|d
µ( d

e )q
e.

PROOF. Write K = Fq and let L/K be an extension of degree d;
then (by the proof of I.H.1, since |L| = qd) it is also a SFE for f =

xqd − x ∈ K[x], with L ∼= Fpmd . Clearly f has no multiple roots
(because R f = L or f ′ = −1, take your pick), and thus no repeated
factors in K[x]. I claim that the monic irreducible factors of f in K[x]
are precisely the monic irreducible polynomials in K[x] of degrees dividing
d. If this is true, then the degree of f equals the sum of degrees
of these polynomials: qd = ∑δ|d N(δ, q)δ. Möbius inversion gives
N(d, q)d = ∑e|d µ( d

e )q
e.

To prove the claim, let g | f be a monic irreducible factor in K[x],
with deg(g) =: δ, and α ∈ L a root of g; then [K(α):K] = δ hence
δ | d. Conversely, if g ∈ K[x] is a monic irreducible polynomial of
degree δ | d, the field K′ := K[x]/(g(x)) has order |K′| = q[K

′ :K] = qδ,
hence is∼= Fpmδ . So I.H.5 gives an embedding ı : K′ ↪→ L, and writing
ı(x̄) =: α ∈ L, we have mα = g ∈ K[x]. Since α ∈ L, the proof of
I.H.1 gives f (α) = 0; and so mα (hence g) divides f . �

We know that N(d, q) is always positive from the existence argu-
ment (for irreducible polynomials) above; if so moved, you could try
to check this from the formula too. To conclude here are a few light
computations.

I.H.8. COROLLARY. The number of irreducible monic polynomials of
degree d in Zp[x] is N(d, p) = 1

d ∑e|d µ( d
e )pe. In particular, there are

1
2 p(p− 1) irreducible quadratics, and 1

3 p(p− 1)(p+ 1) irreducible cubics.

I.H.9. EXAMPLE. How many irreducible monic polynomials of
degree 8 are there over Z2? Since µ is 0 on all divisors of 8 except
1 and 2, we get 1

8(2
8 − 24) = 30. So you have that many options
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for constructing F28 , which is used in AES (Advanced Encryption
Standard).

I.H.10. EXAMPLE. What can we say about the polynomial g =

xp− x− 1 ∈ Zp[x]? It has no roots in Zp, since g(a) = −1 (∀a ∈ Zp).
Let L/Zp be a splitting field, and α ∈ L a root. Then for b ∈ Zp, we
have

(α + b)p − (α + b)− 1 = αp + b− α− b− 1 = 0,

making α, α + 1, . . . , α + p− 1 all roots, and L = Zp(α).
Now suppose g factors in Zp[x], viz. g = g1g2. Then there is a

subset S ⊂ Zp such that g1 = ∏b∈S(x− α− b), and the coefficient of
x|S|−1 in g1, which must belong to Zp, is −∑b∈S(α + b) = −|S|α +

{element of Zp}. This yields a contradiction unless |S| = 0 or p, in
which case g1 or g2 has degree 0.

So g is irreducible, and we conclude that [L:Zp] = deg(g) = p, so
that Zp[x]/(g(x)) gives an explicit construction of Fpp . We should
add here that since g is separable, L/Zp is Galois, and GalZp(g) ∼=
Zp (the only group of order p acting transitively on the roots).

Incidentally, the same argument applies to xp − x − a for each
a ∈ Z∗p. But we have only scratched the surface of the irreducible
polynomials of degree p over Zp — there are N(p, p) = pp−1 − 1 of
them, out of pp(p− 1) total polynomials of that degree.


