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I.H. Finite fields

Recall that if f € Z,[x] is an irreducible polynomial of degree n,
then Z,[x]/(f(x)) =: L gives a field with p" elements. This will still
be the easiest way to construct them, but thinking a priori in terms of
splitting fields gives a much more powerful result:

IL.H.1. THEOREM. Given n € IN and p prime, (i) there exists a field L
with |L| = p", and (ii) this is unique up to isomorphism.

PROOF. (i) Let f := x*" — x and L be a SFE/Z,. Since f =
—1, ged(f, f/) = 1 and f has p" distinct roots in L by LE.3. Since
the Frobenius map ¢ is a homomorphism, the set Rf = {a € L |
¢"(a) = a} of these roots is actually a subfield of L. As it contains all
the roots, R¢/Z, is itself a SFE for f, whence Ry = L.

(ii) Let K be another such field. Then |K*| = p" — 1, and so for
every k € K*, wehavek?" ~! = 1hence k" = k. Thus f has p" distinct
roots in K, and is a splitting field for f over Z,. So K = L. O

It is worth pausing to remember here that, since a finite field is a
vector space over its prime subfield (which is some Z,), it must have
order a power of p. The standard notation is to write IF;, or “GF(q)”
tfor “Galois”, for the finite field of order g = p". Note that instead of
the “huge” polynomial x7 — x in the above proof, we can take any
irreducible f € Z,[x] of degree n; and by virtue of having degree n
over Z,, L := Zy[x]/(f(x)) must be isomorphic to F; by LH.1(ii).

So in a way we have classified (and suggested how to construct)
all finite fields, though we have yet to elucidate their structure.

[.LH.2. COROLLARY. All extensions of finite fields are Galois.

PROOF. Given |L| < oo, with char(L) = p and prime subfield Z,,
the extension L/Z, is separable because Z, is perfect. It is normal
(by 1.G.4) because the subgroup (¢) < Aut(L) generated by Frobe-
nius has fixed field Z,, (cf. LE.9-LE.10). Finally, top-to-intermediate
sub-extensions in a Galois extension are always Galois (see the proof
of 1.G.22(i)). O
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Now recall that for [L| = p" < oo, L* is cyclic (= Z,n_1), with
generator «. If L/K is an extension, it follows at once that K* (< L*)
and (the quotient group) L*/K* are cyclic, and that L = K(«). (That
is, any extension of finite fields is simple.) We can use this to prove

LH.3. THEOREM. Aut(L/Z,) = (¢p) = Z,.

PROOF. Clearly L = Z, (), and every ¢* € Aut(L/Z,). If ¢ =
id;, then ¢F(a) = a = ¢*(a?) = a? (Vd) = every/ € Lisa
root of f = P —x = |L| < p* = k > n. We also know that
¢" =idj;andso1,9,..., 4)”_1 are distinct. But since L/ Z, is Galois,
there are exactly [L:Z,] = n automorphisms. O

L.H.4. COROLLARY. Given an extension L/ K, with |L| < oo, we have
Aut(L/K) = (pi%ly = 7, 1. (In particular, any extension of finite
fields has cyclic Galois group.)

PROOF. Aut(L/K)isasubgroup of the cyclic group Aut(L/Z,) =
(p) = 2.7, and |Aut(L/K)| = [L:K] by the Galois correspon-
dence (cf. [.G.6). O

L.H.5. COROLLARY. Every intermediate field in IFyn / Z, has order p™
for some m|n; and there is exactly one intermediate field of each of these
orders.

PROOF. Given K C T, applying the Tower Law gives m =
[K:Z,)|[Fpn:Zy] = n,and |K| = p™.

The Galois correspondence gives |Aut(IF,« /K)| = n/m. There is
only one subgroup of Aut(F,:/Z,) = Z, of this order; since it is
unique, so is K. 0

Since we get explicit constructions of larger finite fields from irre-
ducible polynomials over smaller ones,? it seems interesting to try
to count these irreducible polynomials (especially over Z;). That

28These explicit realizations are used, among other places, in the construction of
error-correcting codes and in cryptography, since it is easy for computers to work
modulo a polynomial.
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there must exist irreducible polynomials of every degree over ev-
ery finite field is clear: just take the extension F_/IF; guaranteed
by IL.LH.5 (9 = p™, n = md), which is cyclic with generator «, whence
my € IFy[x] is irreducible of degree d. So at least we know we are not
counting the empty set.

We shall begin with some properties of the Mébius function

w:Z-o— {-1,0,1},

which is defined by:

o u() =1

e yi(a) =0 <= aisnot squarefree; and otherwise

o u(p1---pn) = (—1)" (Where py, ..., pn are distinct).
Clearly, y is multiplicative in the sense that

o y(ayay) = p(ay)p(ay) if ged(aq, ap) = 1.
Moreover, for any b € Z . it satisfies

i Za|b ]/t(ll) =0,
since writing b = pgl ce p;s with py, ..., ps distinct, we have

Yap #(8) = Lajpyp, #(@) = Lig ()(=1)' = (1 =1)* =0.
The following result is very useful in number theory and combina-

torics; here it is the key to the counting formula I.H.7 that follows.

L.H.6. LEMMA (Mobius inversion formula). Given a ring R and a
function f: Z~o — R, set g(n) := Y g, f(d); then we may recover f by
f(n) = Eau n(3)8(d).

PROOF. First observe that for e < n dividing n,

n 1, e=n
dngcff <E> N azﬂﬂ(ll) N {O, e < n.
that e|d €

sincee |d | n = 5| Z. It follows that

Y (G)s@) = L (Z) L@ =Lfe ¥ u(G) =,

d|n such
that e|d
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as desired. 0

L.LH.7. THEOREM (Gauss). The number N(d,q) of monic irreducible

polynomials of degree d in IF,[x], where q = p™, is given by
N(d,q) =3} n(P)a"
eld

PROOF. Write K = F; and let L/K be an extension of degree d;
then (by the proof of LH.1, since |L| = ¢%) it is also a SFE for f =
' —x € K[x], with L = T . Clearly f has no multiple roots
(because R¢ = L or f' = —1, take your pick), and thus no repeated
factors in K[x|. I claim that the monic irreducible factors of f in K[x|
are precisely the monic irreducible polynomials in K[x| of degrees dividing
d. If this is true, then the degree of f equals the sum of degrees
of these polynomials: g% = Y51 N(6,q)6. Mbbius inversion gives
N(d, q)d = Lojg p(2)q".

To prove the claim, let ¢ | f be a monic irreducible factor in K|x],
with deg(g) =: 6, and & € L a root of g; then [K(«):K] = J hence
0 | d. Conversely, if ¢ € K[x] is a monic irreducible polynomial of
degree 6 | d, the field K’ := K[x]/(g(x)) has order |K| = glK*K]l = 49,
henceis = FF 5. So LH.5 gives an embedding :: K’ — L, and writing
(%) =« € L, we have m, = ¢ € K[x]. Since « € L, the proof of
LH.1 gives f(«) = 0; and so m, (hence g) divides f. O

We know that N(d, q) is always positive from the existence argu-
ment (for irreducible polynomials) above; if so moved, you could try
to check this from the formula too. To conclude here are a few light
computations.

[.LH.8. COROLLARY. The number of irreducible monic polynomials of
degree d in Zy[x] is N(d,p) = %de u(L)pe. In particular, there are
3p(p — 1) irreducible quadratics, and 1p(p — 1) (p + 1) irreducible cubics.

[L.LH.9. EXAMPLE. How many irreducible monic polynomials of
degree 8 are there over Z,? Since y is 0 on all divisors of 8 except
1 and 2, we get (28 —2*) = 30. So you have that many options
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for constructing IF,s, which is used in AES (Advanced Encryption
Standard).

[.LH.10. EXAMPLE. What can we say about the polynomial g =
xP —x —1 € Zp[x]? Ithas no roots in Z,,, since g(a) = —1(Va € Z,,).
LetL/ Z., be a splitting field, and « € L a root. Then for b € Zy, we
have

(a+b)f —(a+b)—1=al+b—a—-b—-1=0,
making &, +1,...,a + p — 1 allroots, and L = Z,(«).

Now suppose g factors in Z,[x], viz. § = g182. Then there is a
subset S C Z, such that g1 = [pes(x —a —b), and the coefficient of
15171 in g1, which must belong to Z,, is — Ypes(a +b) = —|S|a +
{element of Z,}. This yields a contradiction unless |S| = 0 or p, in
which case g1 or g has degree 0.

So g is irreducible, and we conclude that [L:Z,] = deg(g) = p, so
that Z,[x]/(g(x)) gives an explicit construction of IF,». We should
add here that since g is separable, L/Z, is Galois, and Galz,(g) =
Z,, (the only group of order p acting transitively on the roots).

Incidentally, the same argument applies to x” — x — a for each
a € Z,. But we have only scratched the surface of the irreducible
polynomials of degree p over Z, — there are N(p, p) = pP~! — 1 of
them, out of p”(p — 1) total polynomials of that degree.



