
II. Linear Algebraic Groups

You may be familiar with the notion of a Lie group, which is a
differentiable manifold that also admits a group structure. Most of
the interesting Lie groups, and all of the simple ones, admit matrix
representations. In the classification of simple complex Lie groups
by Cartan and Killing there are four infinite series An, Bn, Cn and Dn

of classical groups and the five exceptional groups G2, F4, E6, E7, and
E8. These are the symmetry groups of “continuous” phenomena in
mathematics and physics.

However, one sometimes needs to study arithmetic phenomena,
or work algebraically. In that case the realization of these groups as
matrix groups allows us to restrict the coefficients (i.e. matrix en-
tries) to lie in a particular field — not just subfields of C.1 We will
take this more general point of view and restrict our study to groups
of matrices preserving a (nondegenerate) symmetric or alternating
bilinear form, in parallel with the complex classical Lie groups.

Where things become more complicated in the classical theory is
when one gets into real forms of the complex Lie groups. The point
is that there are distinct real Lie groups whose “complexifications”
yield the same complex Lie group, starting with R∗ and the unit cir-
cle S1 (which are both real forms of C∗). Unitary groups, which we
will touch on, are real forms of special linear groups. Over more
general fields, these “forms” of linear algebraic groups proliferate
even further, and interact with Galois theory, even if we shall largely
avoid this in our brief study.

1One can abstractify much further and define algebraic groups to be “schemes”
whose F-points form a group for any field F extending their field of definition.
(Obviously, we aren’t going to do that here.) We could also ask for entries in Z or
some OK to get discrete “arithmetic groups”.
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130 II. LINEAR ALGEBRAIC GROUPS

II.A. Bilinear forms

Let V be a finite-dimensional vector space over a field F, with
basis e = {e1, . . . , en}. Its dual space is the vector space

V∨ := HomF(V, F)

of F-linear functionals. This has a (dual) basis e∨ = {e∨1 , . . . , e∨n }
defined by e∨i (ej) = δij; for an arbitrary v = ∑j vjej ∈ V, this yields
e∨i (v) = vi.

II.A.1. NOTATION. We will denote coordinate vectors (of elements
of V or V∨) with respect to a basis b by [ · ]b. With f = ∑i fie∨i ∈ V∨,
and v as above, this gives:

• [v]e =
( v1

...
vn

)
;

• t[ f ]e∨ = ( f1, . . . , fn); and thus (by matrix multiplication)
• t[ f ]e∨ [v]e = f (v).

Similarly, matrices of a transformation, say T ∈ HomF(W, W ′), with
respect to bases b of W and b′ of W ′, are written b′ [T]b. If T has an
inverse, then b[T−1]b′ = (b′ [T]b)−1.

Here we’ll mainly use this as follows: given a second basis ẽ of
V, and writing 1 ∈ HomF(V, V) for the identity map, the change-of-
basis matrix ẽ[1]e satisfies ẽ[1]e[v]e = [v]ẽ. (We will also write 1 for the
identity map on V∨.) Computing f (v) two ways

• f (v) = t[ f ]ẽ∨ [v]ẽ = t[ f ]ẽ∨ ẽ[1]e [v]e
• f (v) = t[ f ]e∨ [v]e = t(e∨ [1]ẽ∨ [ f ]ẽ∨)[v]e = t[ f ]ẽ∨ t

e∨ [1]ẽ∨ [v]e

yields (since it holds for all f ∈ V∨ and v ∈ V) the formula

e∨ [1]ẽ∨ = t
ẽ[1]e = t(ẽ[1]e)−1.

II.A.2. DEFINITION. (i) The tensor product of V with itself, writ-
ten V ⊗ V, is the F-vector space with basis {ei ⊗ ej}i,j=1,...,n. So as a
set

V ⊗V = {∑i,j aijei ⊗ ej | aij ∈ F}.
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Given v = ∑i viei and w = ∑j wjej in V, we can define an element2

v⊗ w ∈ V ⊗V by

v⊗ w = (∑i viei)⊗ (∑j wjej) := ∑i,j viwj ei ⊗ ej.

When there is more than one field over which one might consider V
as a vector space, we write V ⊗F V to disambiguate the notation.

(ii) A bilinear form V is an element

B ∈ HomF(V ⊗V, F) (∼= V∨ ⊗V∨).

This is equivalent to giving a map B(·, ·) : V ×V → F which is sepa-
rately F-linear in each entry (why?). The matrix of B with respect to
e is simply [B]e := (B(ei, ej)), and

B(v, w) = B(∑i viei, ∑j wjej) = ∑i,j viwj B(ei, ej) =
t[v]e [B]e [w]e.

Under change of basis from e to ẽ, and writing S := e[1]ẽ, we have

t[v]ẽ[B]ẽ[w]ẽ = B(v, w) = t[v]e[B]e[w]e =
t[v]ẽ tS[B]eS[w]ẽ

for every v, w ∈ V hence [B]ẽ = tS[B]eS.

(iii) The discriminant ∆B := det[B]e of the bilinear form is only well-
defined up to multiplication by a square, since the change-of-basis
formula yields det[B]ẽ = (det S)2 det[B]e for some matrix S (and we
want something invariant with respect to choice of basis). So we
regard ∆B as an element of F∗/(F∗)2 ∪ {0}.

A bilinear form determines homomorphisms

BL : V → V∨ and BR : V → V∨

v 7→ BL(v) := B(v, ·) v 7→ BR(v) := B(·, v)

which are easy to describe in matrix terms. For instance, since

t[BR(v)]e∨ [w]e = BR(v)(w) = B(w, v) = t[w]e[B]e[v]e = t[v]e t[B]e[w]e,

2Warning: not all elements of V ⊗ V are of this form. They are like matrices of
rank 1.
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we get [BR(v)]e∨ = [B]e[v]e, hence e∨ [BR]e = [B]e; and similarly, one
has e∨ [BL]e = t[B]e. At this level of generality, “orthogonal” sub-
spaces are pretty weird, but one can define them: if U ⊆ V is any
F-subspace, then

U⊥L :=
⋂

u∈U
ker(BL(u)) and U⊥R :=

⋂
u∈U

ker(BR(u))

are subspaces of V. One nice property is that, since U “is in the right
kernel of everything in its left kernel”, we have U ⊆ (U⊥L)⊥R (and
vice-versa). The subspaces V⊥L and V⊥R , in particular, are called the
left and right radical of V.

II.A.3. PROPOSITION-DEFINITION. The following are equivalent:
(i) V⊥L = {0};
(ii) V⊥R = {0}; and
(iii) ∆B 6= 0 ([B]e invertible).
When any (hence all of them) hold, B is said to be nondegenerate.

PROOF. Clearly (i) holds ⇐⇒ ∩v∈V ker(BL(v)) = {0}. This
translates to the statement that no coordinate vector [w]e has zero
dot product with every coordinate vector t[B]e[v]e, i.e. with every
vector in the (column space of t[B] =) row space of [B]e. This is the
same as saying the nullspace of [B]e is zero, i.e. that [B]e is invertible.
The equivalency (ii) ⇐⇒ (iii) is similar. �

II.A.4. PROPOSITION. For B nondegenerate, and U ⊂ V a subspace:
(a) Any f ∈ HomF(U, F) = U∨ is the restriction to U of BL(w) for

some w ∈ V (and BR(w′) for some w′ ∈ V).
(b) (·)⊥R and (·)⊥L are mutual inverses (hence both bijective) on the

set of subspaces of V.

PROOF. Let ẽ1, . . . , ẽ` be a basis of U, and ẽ`+1, . . . , ẽn the rest of
a basis for V. The choice of those remaining basis elements gives
a choice of extension of ẽ∨i ∈ U∨ to ẽ∨i ∈ V∨, hence for any f =

∑`
i=1 fi ẽ∨i ∈ U∨ to an element of V∨. In particular, the restriction-of-

functionals map ı∨ : V∨ → U∨ dual to ı : U ↪→ V is surjective. So by
“rank + nullity”, dim(ker ı∨) = n− `.
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Moreover, U⊥R is the kernel of the composition

V ∼=

BR //
&& &&

V∨ // // U∨

v � // B( · , v)

so has dimension n − `. (This holds for any subspace and also re-
placing R by L). But then (U⊥R)⊥L ⊇ U have the same dimension
(n− (n− `) = `) so are equal. �

II.A.5. DEFINITION. Here are three (essentially two) special kinds
of bilinear forms:

• B is symmetric ⇐⇒ B(x, y) = B(y, x) (∀x, y ∈ V).
• B is alternating ⇐⇒ B(x, x) = 0 (∀x ∈ V).
• B is skew-symmetric ⇐⇒ B(x, y) = −B(y, x) (∀x, y ∈ V).

That alternating implies skew-symmetric follows from

B(x, y) + B(y, x) = B(x + y, x + y)− B(x, x)− B(y, y).

If char(F) 6= 2, then skew-symmetric forms are alternating (put x =

y, and divide by 2). Note that B is symmetric [resp. skew-symmetric]
if and only if its matrix with respect to any basis satisfies t[B]e = [B]e
[resp. −[B]e].

Given a bilinear form B on V, “x ⊥ y” will mean B(x, y) = 0.

II.A.6. THEOREM. The following are equivalent:
(i) x ⊥ y ⇐⇒ y ⊥ x for all x, y ∈ V.
(ii) B is symmetric or alternating.

PROOF. Obviously (ii) =⇒ (i). So assume (i), let x, y, z ∈ V be
arbitrary, and put ν := B(x, y)z− B(x, z)y. Then

B(x, ν) = B(x, y)B(x, z)− B(x, z)B(x, y) = 0 =⇒ x ⊥ ν

=⇒ ν ⊥ x =⇒ 0 = B(ν, x) = B(x, y)B(z, x)− B(x, z)B(y, x),

and taking y := x gives B(x, x)B(z, x) = B(x, z)B(x, x) hence

B(x, x) (B(x, z)− B(z, x)) = 0 (∀x, z ∈ V).
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We record these two observations in the form

(II.A.7)

{
(i) B(x, y)B(z, x) = B(x, z)B(y, x)

(ii) B(x, x) 6= 0 =⇒ B(x, z) = B(z, x) (∀z).

If we are working over R or C, at this point we are done: if some
B(x0, x0) 6= 0 (i.e. B isn’t alternating), then for any y, B(x0 + εy, x0 +

εy) 6= 0 for small enough ε (by continuity). Applying (II.A.7)(ii)
gives B(x0 + εy, z) = B(z, x0 + εy) (∀z), whereupon differentiating
d
dε and setting ε = 0 gives B(y, z) = B(z, y) ( =⇒ B is symmetric).

For more general fields, we have to work harder. Suppose that B
is neither symmetric (B(u, v) 6= B(v, u) for some u, v ∈ V) nor alter-
nating (∃w ∈ V with B(w, w) 6= 0). We will obtain a contradiction.
Applying (II.A.7)(ii) yields

B(u, u) = 0 = B(v, v) and

{
B(w, u) = B(u, w)

B(w, v) = B(v, w)
,

which together with (II.A.7)(i) gives{
B(u, v)B(w, u) = B(u, w)B(v, u) = B(w, u)B(v, u)
B(v, u)B(w, v) = B(v, w)B(u, v) = B(w, v)B(u, v)

and thus (using B(u, v) 6= B(v, u) again) B(w, u) = 0 = B(w, v).
Since this also gives B(u, w) = 0 = B(v, w), we can write

B(u, v + w) = B(u, v) + B(u, w) = B(u, v) 6=

B(v, yu) = B(v, u) + B(w, u) = B(v + w, u).

Applying (II.A.7)(ii) one more time, we see that B(v + w, v + w) = 0.
But expanding this reveals B(w, w) = 0, a contradiction. �

II.A.8. DEFINITION. Let B and B′ be bilinear forms on F-vector
spaces V and V′. We will call them equivalent, and write B ∼ B′, if
there exists an isomorphism µ : V → V′ such that the composition

V ⊗V
µ⊗µ−→ V′ ⊗V′ B′−→ F

recovers B. (Clearly this means that if we write e′ for the basis µ(e)
of V′, then [B′]e′ = [B]e.)
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II.A.9. PROPOSITION-DEFINITION. Suppose B, B̃ are two bilinear
forms on V, and e any basis of V. Then B ∼ B̃ if and only if [B]e and
[B̃]e are cogredient, i.e. [B]e = tS[B̃]eS for some invertible matrix S.

PROOF. If B ∼ B̃, then there is an isomorphism µ : V → V such
that [B]e = [B̃]ẽ, where ẽ = µ(e). But [B̃]ẽ = tS[B̃]eS, where S =

e[1]ẽ = [µ]e.
Conversely, since any invertible matrix S is [µ]e (hence e[1]µ(e))

for some isomorphism µ, we get [B]e = [B̃]µ(e) hence B ∼ B̃ (more
precisely B(x, y) = B̃(µ(x), µ(y))). �


