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II.B. Classical groups (a brief zoology)

So far we have made a reasonable case that to avoid pathologies,
we should stick to nondegenerate forms that are either symmetric or
alternating. The classical groups that we study in the sections that
follow are primarily the groups AutF(V, B) of F-linear isometries of
such bilinear forms, i.e. isomorphisms T : V → V satisfying

B(T(u), T(v)) = B(u, v).

To delineate the classification a bit, we shall work with matrices with
respect to a fixed basis e = {e1, . . . , en} of V, and note that writing
arbitrary invertible transformations T in this fashion (as [T]e = X)
induces a group isomorphism

(II.B.1) AutF(V) ∼= GLn(F) := {X ∈ Mn(F) | X is invertible} ,

where the RHS is called the general linear group. It has the special
linear group

SLn(F) := {X ∈ Mn(F) | det X = 1}

as a subgroup.
Now assume B nondegenerate, and set M := [B]e. Then we have

det M 6= 0; and B is symmetric resp. alternating exactly when tM =

M resp. tM = −M. As before, writing isometries with respect to the
basis induces isomorphisms

(II.B.2) AutF(V, B) ∼=
{

X ∈ GLn(F) | tXMX = M
}

.

The groups in (II.B.2) are called orthogonal (written O(V, B) or in
the symmetric case and symplectic (and written Sp(V, B)) in the al-
ternating case. They are a priori subgroups of GLn(F), but the sym-
plectic groups are in fact subgroups of SLn(F). Since elements of
O(V, B) can have determinant −1, the orthogonal groups are not,
but we can define index-2 subgroups called special orthogonal groups
by SO(V, B) := O(V, B) ∩ SLn(F).
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As we shall see later, the symplectic groups only exist for n even,
and (fixing n and assuming char(F) 6= 2) are all isomorphic, jus-
tifying the standard notation Spn(F). For orthogonal groups, this
“uniqueness” is only true over fields with F∗ = (F∗)2, like C, in
which case we can write On(F) and SOn(F). In fact, this completes
the classification of the simple complex classical groups: where 1n

Cartan type Ar Br Cr Dr
Lie group SLr+1(C) SO2r+1(C) Sp2r(C) SO2r(C)

M = [B]e — 12r+1

(
0 1r
−1r 0

)
12r

always denotes the n× n identity matrix.
To get an idea of what happens for F = R, first consider the

orthogonal groups: the symmetric matrices M =
( −1p 0

0 1q

)
are not

cogredient for different p and q, and so the resulting real groups of
type Br resp. Dr, namely SO(p, q) (with p + q = 2r + 1 resp. 2r),
are not isomorphic for different pairs (p, q).3 The cases SO(p, 0) =

SO(p) = SO(0, p) are called definite special orthogonal groups, and
the other indefinite. Actually type Dr has one more real group, the
quaternionic orthogonal group

O∗(2r) := {g ∈ GLn(H) | g∗(i1n)g = i1n},

which can also be identified with the complex matrices

{X ∈ SO2n(C) | JX̄ = XJ}

where J =
(

0 1r
−1r 0

)
.

There is another important series of real Lie groups that appears
in type An: the unitary groups. More generally, for any field F pos-
sessing an involution ρ : F → F (i.e. ρ2 = IdF), with fixed field F0,
we can define these groups. For simplicity write V = Fn and “( )”
for ρ( ), and suppose that M ∈ Mn(F) is invertible with tM = M̄.

3Here (p, q) and (q, p) are considered to be the “same” as pairs.
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Define a Hermitian form by H(v, w) := tvMw̄ = H(w, v), with corre-
sponding unitary group

U(H) := {Z ∈ Mn(F) | tZMZ̄ = M}

= {Z | H(Zv, Zw) = H(v, w) (∀v, w ∈ V)}.

These are to be regarded as “linear algebraic groups over F0” (not
F) because of the “half-conjugate-linearity” (or “sesquilinearity”) of
H in F: the groups are cut out by polynomial equations in Zij and
their conjugates Z̄ij; but writing F = F0(α) and Z = X + αY, these
become honest polynomial equations in the “real” and “imaginary”
parts Xij, Yij ∈ F0.

If we now take F = C, F0 = R, and M =
( −1p 0

0 1q

)
, the re-

sulting group is denoted U(p, q) and is of type Ap+q−1, a real form
of SLp+q(C). We can further intersect with SLp+q(C) to get the (in-
definite and definite) special unitary groups. With the addition of
quaternionic special linear groups SU∗(2m) := SLm(H) in type A2m−1

and certain “quaternionic unitary groups” Sp(p, q) in type Cp+q, this
essentially completes the classification over R.

II.B.3. EXAMPLES. (A) As a simple exercise, convince yourself
that Sp2(C) = SL2(C), and that the “real” groups SO(2) (rotations
in the plane) and U(1) (= U(0, 1)) (unit circle in C∗) are isomorphic.

(B) To elucidate the remarks on real forms in the introduction, the
point is that all the matrix groups just discussed are cut out by poly-
nomial equations in the matrix entries, like det X = 1. For instance,
we can exhibit R∗ or C∗ as a 2× 2 (real or complex) matrix group
in this way by setting X12 = X21 = 0 and X11X22 (= det X) = 1
(and plugging in real or complex numbers); the isomorphism sends
x 7→

(
x 0
0 x−1

)
(x ∈ R∗ or C∗).

(C) We can exhibit the unit circle S1 as a 2× 2 real matrix group by
setting X11 = X22, X12 = −X21, and X2

11 + X2
21 (= det(X)) = 1.

This time the isomorphism sends a complex number z = x + iy of
absolute value 1 to

(
x −y
y x

)
. Another easy exercise is to show that
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the real matrix group just described is a real form of C∗, that is, to
give a multiplicative group isomorphism from the nonzero complex
numbers to complex matrices of the form ( u −v

v u ).

From the last example it should now be clear how we can turn
“sesquilinear” algebraic groups over F = F0(α) into honest linear
algebraic groups over F0. We simply replace every Zij by a 2 × 2

block
(

Xij α2Yij
Yij Xij

)
! Of course, α = i if F0 = R.


