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II.C. Symplectic groups

Continuing with the notation of §II.A, assume char(F) 6= 2 and
let B be a skew-symmetric, hence alternating, bilinear form on V. Then
for any basis e of V, the entries Bij of the matrix [B]e satisfy Bij =

−Bij, and in particular Bii = 0, for all i, j = 1, . . . , n.
The next result says that the rank of such a form (i.e. of its matrix)

is always even. What is perhaps more surprising is that, since any
two bases are related by an isomorphism, all alternating forms of a
given rank are equivalent in the sense of II.A.8:

II.C.1. THEOREM. There exists a basis ε such that [B]ε is a block-
diagonal matrix diag{J, . . . , J, 0, . . . , 0}, where J =

( 0 1
−1 0

)
. (The zeroes

are “1× 1” blocks, and the nondegenerate case is the one with no zeroes.)

PROOF. If B = 0, we are done (since any basis will do). Oth-
erwise, there exist u, v such that b := B(u, v) 6= 0. They are nec-
essarily independent (why?). Put u1 := u and v1 := b−1v, so that
B(u1, v1) = 1 = −B(v1, u1).

Inductively assume that there exists a linearly independent set
ε(k) = {u1, v1, . . . , uk, vk}, such that B(ui, vi) = 1 = −B(vi, ui) and all
other B(x, y) = 0 (for x, y ∈ ε(k)). Writing Vk := span(ε(k)), we obvi-
ously have [B|Vk ]ε(k) = diag{J, . . . , J}, whence B|Vk is nondegenerate
and (by II.A.3) Vk ∩V⊥k = {0}.

Now for any x ∈ V, put y := x−∑k
i=1 B(x, vi)ui + ∑k

i=1 B(x, ui)vi

and notice that

B(y, uj) = B(x, uj) + B(x, uj)

−1︷ ︸︸ ︷
B(vj, uj) = 0

and B(y, vj) = B(x, vj)− B(x, vj)B(uj, vj)︸ ︷︷ ︸
1

= 0

for all j. Hence y ∈ V⊥k , and x ∈ Vk + V⊥k . So V = Vk + V⊥k , which
together with Vk ∩V⊥k = {0} gives V = Vk ⊕V⊥k .

Finally, apply the first paragraph to B|V⊥k : if this is zero, the in-

duction terminates and we add any basis of V⊥k to ε(k). If it is not
zero, add the resulting uk+1, vk+1 to our basis to get ε(k+1), and con-
tinue. �



II.C. SYMPLECTIC GROUPS 141

II.C.2. COROLLARY. Let M = − tM ∈ Mn(F). Then 2|rank(M)

and det M ∈ F2.

PROOF. Thinking of M as [B]e for some bilinear form on V, take
S := ε[1]e for ε as in II.C.1. Then

M = tS[B]εS = tS · diag{J, . . . , J, 0, . . . , 0} · S

gives det M = (det S)2 or 0; and rank(M) is 2×the number of J’s. �

II.C.3. COROLLARY. Two skew-symmetric matrices are cogredient if
and only if they have the same rank.

PROOF. Only the reverse implication needs to be checked. Again,
we interpret the matrices as [B]e and [B̃]e, which applying II.C.1 be-
come tSJ S and tS̃J S̃ (with J the J-block diagonal matrix of that
rank). So they are cogredient by S−1S̃. �

II.C.4. DEFINITION. (i) Let V be an F-vector space of dimension
n = 2r, and B a nondegenerate alternating bilinear form. Then (V, B)
is called a symplectic vector space, and B a symplectic form.

(ii) Continuing with the assumptions of (i), the group

Spn(F) := {T ∈ AutF(V) | B(Tx, Ty) = B(x, y) (∀x, y ∈ V)},

which up to isomorphism4 is independent of the choice of B, is called
the symplectic group of degree n over F. Note that the elements T
are exactly the (self-)isometries of (V, B).

(iii) A basis in which B has matrix Jn := diag{J, . . . , J} (with r = n
2

blocks) is called a symplectic basis for (V, B). More explicitly, this
is of the form {u1, v1, . . . , ur, vr} with B(ui, uj) = 0 = B(vi, vj) and
B(ui, vj) = δij = −B(vi, uj).

I should point out that, given a symplectic basis ε = {εi}n
i=1 of

(V, B), the transformations T for which T(ε) is another symplectic

4The notation might still be a bit deceptive; it is perhaps more honest to write
Aut(V, B), and say that it is conjugate to any other Aut(V, B′) (B′ also nondegener-
ate alternating) inside Aut(V), and isomorphic to the group Spn(F) := Aut(Fn, Jn)
(where Jn is the bilinear form with matrix Jn with respect to the standard basis).
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basis are exactly the elements of Spn(F). (If B(Tx, Ty) = B(x, y)
fails for some (x, y), then B(T(εi), T(ε j)) = B(εi, ε j) (= [Jn]ij) fails
for some (i, j).) In matrix terms, this condition on T is precisely that
[B]T(ε) = t

ε[1]T(ε) [B]ε ε[1]T(ε) = t[T]ε Jn[T]ε equal [B]ε = Jn.
We now introduce some terminology and technical lemmas which

will be instrumental in showing that the quotient of the symplectic
group by its center is simple.

II.C.5. DEFINITION. Let U ⊂ V be a subspace of a symplectic
vector space. The radical of U is the subspace U ∩ U⊥. If U is its
own radical (i.e. U ⊂ U⊥, or B(U, U) = 0), then U is isotropic.

II.C.6. EXAMPLES. (a) Obviously radicals are isotropic.
(b) Notice that if ε = {u1, v1, . . . , ur, vr} is a symplectic basis, then

F〈u1, . . . , ur〉 and F〈v1, . . . , vr〉 are isotropic – in fact, maximally so, as
any enlargement is no longer isotropic.

II.C.7. LEMMA. Given a subspace U of a symplectic space (V, B) with
radical R, B is well-defined on U := U/R,5 and gives it the structure of a
symplectic vector space.

PROOF. Well-definedness follows from B(u+ r, u′+ r′) = B(u, u′)
since R is ⊥ to everything in U. It is left to check that B|U (which is
not nondegenerate) descends to a nondegenerate alternating form on
U, which is simply because in U only 0 is ⊥ to everything. �

II.C.8. LEMMA. Any maximal isotropic subspace U of a symplectic
space (V, B) has dim U = 1

2 dim V.

PROOF. Given V0 ⊂ V, by the proof of II.A.4 dim V⊥0 = 2r −
dim V0. So if dim V0 > r, we cannot have V0 ⊂ V⊥0 . On the other
hand, if V0 is isotropic and dim V0 < r, we have V0 ( V⊥0 , and for
any v ∈ (V0)

⊥\V0, V0 + F〈v〉 is still isotropic,6 and enlarges V0. �

5Granted, one would not want to use this notation in a context where it could be
confused with complex conjugation . . .
6Remember, in a symplectic space, every vector is self-orthogonal.
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II.C.9. LEMMA. Any isometry θ : (U, B|U)
∼=→ (Ũ, B|Ũ) between sub-

spaces extends to a (self )-isometry of (V, B), i.e. is induced by an element
T ∈ Spn(F).

PROOF. Taking a symplectic basis ε̄′ = {ū1, v̄1, . . . , ūk, v̄k} for U
(possible by II.C.7), let ε′ := {u1, v1, . . . , uk, vk} be any lift to U, and
write ν◦ := {vk+1, . . . , vm} for any basis of R = U ∩U⊥. Put U′ :=
F〈ε′〉, and observe that U′ ∩ R = {0}: since B′ := B|U′ is nonde-
generate, a nonzero element of U′ cannot belong to (U′)⊥ (which
contains R). So U = U′ ⊕ R, and ε′ ∪ ν◦ is a basis of U.

We now extend this to a symplectic basis of (V, B). Write U′′ :=
(U′)⊥ and B′′ := B|U′′ . By nondegeneracy of B′ we have V = U′ ⊕
U′′. Since B is nondegenerate and ∆B = ∆B′∆B′′ , B′′must also be non-
degenerate. Let W ⊂ U′′ be a maximal isotropic subspace containing
R, and extend ν◦ to a basis ν of W. By II.C.8, dim W = 1

2 dim U′′ =
r− k, so we can write ν = {vk+1, . . . , vr}; and one easily checks7 that
there exist uk+1, . . . , ur in U′′ completing this to a symplectic basis ε′′

of (U′′, B′′). Now ε := ε′ ∪ ε′′ gives the desired basis of V.
Finally, define a basis of Ũ by θ(ε′ ∪ ν◦). Since θ is an isometry,

θ(ε′) is symplectic and θ(ν◦) spans the radical of Ũ. So we may ex-
tend this to a symplectic basis ε̃ of V in the same way. Now simply
let T be the linear map sending ε 7→ ε̃. This sends a symplectic basis
to a symplectic basis, and is thus in Spn(F). �

Transvections.

In order to prove simplicity of Spn modulo its center (and that the
latter is just {±1}), the next big ingredient we need is a result which
is important in its own right, to the effect that certain special kinds
of transformations generate Spn. To get a feel for this let’s consider
the n = 2 case first.

7F〈vk+2, . . . , vr〉⊥ ∩U′′ has dimension r− k + 1 and contains W. Take any vector
u in the complement; since u isn’t in W and is ⊥ to vk+2, . . . , vr, it cannot be ⊥ to
vk+1. Scale it to make B(u, vk+1) = 1, and then you have your uk+1.
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II.C.10. EXAMPLE. The condition that a 2 × 2 matrix M satisfy
tMJM = J implies that det M = ±1. But let’s look more closely:
writing M =

(
a b
c d

)
, we get tMJM =

(
0 ad−bc

bc−ad 0

)
. This forces

det M = 1, and there are no further conditions: Sp2(F) = SL2(F).
Now it is easy to see that you can write all the elements of SL2(F)

as products of a the type of elementary matrices associated to “re-
place” operations: any

(
a b
c d

)
of determinant 1 and b 6= 0 can be writ-

ten as
(

1 0
x 1

) ( 1 y
0 1

) (
1 0
z 1

)
, by taking y = b, x = d−1

b , and z = a−1
b .

The case c 6= 0 is similar, while (say, having done that case) you take(
a 0
1 a−1

) ( 1 0
−a 1

)
to get the remaining case (b = 0 = c)

(
a 0
0 a−1

)
.

To do something similar for n > 2, we slightly expand and gen-
eralize these elements as follows:

II.C.11. DEFINITION. Let (V, B) be a symplectic F-vector-space.
The linear transformations (for each u ∈ V and c ∈ F)

τu,c : V → V

x 7→ x + cB(x, u)u

are called symplectic transvections (in the direction u).

Of course, we should check that they deserve their name:

II.C.12. LEMMA. τu,c ∈ Spn(F) for every u, c.

PROOF. F-linearity is clear. We must check they are isometries:
so compute B(τu,c(x), τu,c(y)) = B (x + cB(x, u)u, y + cB(y, u)u) =

B(x, y) + cB(x, u)
((((

((((
((({B(y, u) + B(u, y)}+ c2B(x, u)B(u, y)���

��: 0B(u, u)

= B(x, y), done. �

For reference, here is a list of their

II.C.13. PROPERTIES. (Proofs are easy and left to you.)
(i) τu,c′τu,c′′ = τu,c′+c′′ , and τu,c = 1 ⇐⇒ c = 0; hence c 7→ τu,c

defines an injective group homomorphism (F,+) ↪→ Spn(F).

(ii) Tτu,cT−1 = τT(u),c for all T ∈ Spn(F).
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(iii) τau,c = τu,a2c.

(iv) τu,c(x) = x if x ∈ F〈u〉⊥; in particular, τu,c(u) = u.

(v) Set ηu,c := τu,c − 1 : x 7→ cB(x, u)u. We may regard ηu,c as an
element of EndF(V), with η2

u,c = 0. It is nilpotent, since η2
u,c = 0; and

so τu,c is unipotent, with det([τu,c]e) = 1 (see the next Remark).

II.C.14. REMARK. Recall that an element of a ring R with zero as
a power is called nilpotent. When this is true of τ − 1, τ is called
unipotent. If R = EndF(V) is the endomorphism ring of a vector
space, then by putting [τ]e in Jordan form one immediately sees that
it must have diagonal entries all 1, hence determinant 1.

We have discussed isotropic subspaces of (V, B); another type
of subspace is a hyperbolic plane H, which is a subspace of the form
H = span{u, v}, with B(u, v) = 1 (that is, spanned by a hyperbolic
pair). This will be used in the next proof.

II.C.15. THEOREM. Spn(F) is generated by symplectic transvections.

PROOF. As usual we take Spn(F) to mean the isometries of a
given n-dimensional symplectic space (V, B), i.e. invertible trans-
formations preserving B in the sense that B(Tx, Ty) = B(x, y).

Step 1: Assume that for any two hyperbolic pairs (u, v) and (u′, v′), there
exists a product of transvections T = ∏i τi such that ρ(u) = u′ and
ρ(v) = v′. [Call this assumption (∗).] Then the result follows.

We induce on n. Let g ∈ Spn(F), and (u, v) a hyperbolic pair;
then (g(u), g(v)) is also hyperbolic. So by (∗) there exists T = ∏i τi

such that T(u) = g(u) and T(v) = g(v), and g′ := T−1g fixes u and
v hence H := F〈u, v〉.

Since g′ ∈ Spn(F), it also stabilizes (but need not fix) U := H⊥.
That is, it restricts to an self-isometry of (U, B|U), and may be re-
garded as an element of Spn−2(F). By induction, it is thus given by a
product of transvections in directions in U: g′|U = ∏j τ′j |U. But since
both g′ and the τ′j are the identity on H, we have g′ = ∏j τ′j .

Conclude that g = Tg′ = ∏i τi ∏j τ′j .
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Step 2: Given any u, u′ ∈ V, there exists a product of transvections send-
ing u 7→ u′.

There are two cases to deal with. First, suppose B(u, u′) 6= 0, and
set w := u− u′. Then τw,c(u) = u + cB(u, w)w = u− cB(u, u′)(u−
u′); and taking c := B(u, u′)−1, this is just u′.

Next suppose B(u, u′) = 0. Then there exists f ∈ V∨ such that
f (u) 6= 0, f (u′) 6= 0. By nondegeneracy of B, there is a u′′ ∈ V such
that f (·) = B(u′′, ·). Hence B(u′′, u′) 6= 0 6= B(u′′, u), and we can
just apply the first case twice to get a product of two transvections
sending u 7→ u′′ 7→ u′.

Step 3: If (u, v) and (u, v′) are hyperbolic pairs, there exists ∏i τi fixing u
and sending v 7→ v′.

Again, two cases: if B(v, v′) 6= 0, then τw,c (with w := v− v′ and
c := B(v, v′)−1) sends v 7→ v′ by the same computation as before.
Moreover, since B(u, v) = 1 = B(u, v′), we have B(u, w) = 0 hence
τw,c(u) = u.

If B(v, v′) = 0, then we apply the first case to get transvections
sending (u, v) 7→ (u, u + v) and (u, u + v) 7→ (u, v′). Here (u, u + v)
is a hyperbolic pair since B(u, u) = 0; and B(v, u + v) = B(v, u) =

−1 and B(u + v, v′) = B(u, v′) = 1 are both nonzero.

Finally, note that Step 3 implies (∗) by sending (u, v) 7→ (u, v′) then
(−v′, u) 7→ (−v′, u′). �

II.C.16. COROLLARY. The center of Spn(F) is {±1}.

PROOF. Let T ∈ C(Spn(F)). For any v ∈ V, by nondegeneracy
∃u ∈ V so that (u, v) is a symplectic pair. So

τv,c = T−1τv,cT = τT−1v,c (∀c)

=⇒ τv,1(u)− u = τT−1v,1(u)− u

=⇒ v = B(u, v)v = B(u, T−1v)T−1v

=⇒ Tv = B(u, T−1v)v,

whence T stabilizes every line F〈v〉 in V.
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For a basis e = {e1, . . . , en}, this gives [T]e = diag{α1, . . . , αn};
and for any i 6= j, it gives that αiei + αjej is a multiple of ei + ej, forcing
αi = αj. So T = α1 for some α ∈ F. Finally, for any hyperbolic pair
(u, v), 1 = B(u, v) = B(Tu, Tv) = α2B(u, v) = α2 =⇒ α = ±1. �

Since transvections have determinant 1, we also have:

II.C.17. COROLLARY. T ∈ Spn(F) =⇒ det[T]e = 1. That is,
Spn(F) ≤ SLn(F).

Finally, the symplectic group is its own derived group (i.e. com-
mutator subgroup):

II.C.18. COROLLARY. Spn(F) = DSpn(F) for |F| > 3.

PROOF. By II.C.15, it suffices to show that an arbitrary transvec-
tion τz,c is contained in DSpn(F). Since |F| > 3, ∃d ∈ F∗ with
d2 6= 1. Put b := c

1−d2 and a := −d2b = −d2c
1−d2 ; then a + b = c

and τz,c = τz,aτz,b.
Pick w ∈ V so that B(z, w) = 1, put U := F〈z, w〉, and consider

the linear map θ : U → U sending z 7→ dz, w 7→ d−1w. This θ is an
isometry, and by II.C.9 extends to V: i.e., ∃T ∈ Spn(F) with T(z) =
dz. Using II.C.13,

Tτ−1
z,b T−1 = Tτz,−bT−1 = τT(z),−b = τdz,−b = τz,−bd2 = τz,a

hence τz,c = τz,aτz,b = Tτ−1
z,b T−1τz,b = [T−1, τz,b] ∈ DSpn(F). �

Simplicity.

Certainly Spn(F) itself is not simple, because its center is a (barely)
nontrivial normal subgroup. Rather, as mentioned above, we aim to
prove that the quotient by its center is simple. For that, we need a
definition and two lemmas:

II.C.19. DEFINITION. (i) Let F∗ act on FN+1\{0} by

α.(a0, . . . , aN) := (αa0, . . . , αaN).

The N-dimensional projective space is the set of orbits,

PN(F) := (FN+1\{0})/F∗.
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Orbits are regarded as “points” of the projective space, and are writ-
ten [a0 : · · · : aN]. We can identify them with lines through 0.

(ii) If we want to avoid explicit coordinates, we can write in-
stead PV := (V\{0})/F∗ for the projectivization of an F-vector space
(where α.v := αv), denoting its elements by [v]. Of course, with
dim V = n, we have PV ∼= Pn−1(F).

II.C.20. LEMMA. Spn(F) acts primitively8 on Pn−1(F) (= PV).

PROOF. Here the action is just by g[v] := [gv]. A primitive action
is a particular sort of transitive group action. That the action here is
transitive follows at once from II.C.9: for any [u], [u′] ∈ PV, the map
from U := F〈u〉 to Ũ := F〈u′〉 sending u 7→ u′ is an isometry, since
B(u, u) = 0 = B(u′, u′). So there is an element g ∈ Spn(F) with
g[u] = [u′]. But primitivity asks a bit more.

Suppose we have a partition P of PV into disjoint subsets, viz.
PV = qS∈PS, and that this partition is stabilized by Spn(F). (That
is, for any g ∈ Spn(F) and S ∈ P, we have gS ∈ P.) The primitivity
we are claiming says that P can only be the partition into singletons
or the entire space; i.e., either every |S| = 1 or the only S ∈ P is
S = PV. The idea of the proof is to suppose that some S ∈ P contains
two distinct elements [x], [y] ∈ PV, and show that we can find g ∈
Spn(F) sending [x] 7→ [x] (so that gS = S) but [y] to an arbitary
element other than [x] (forcing S = PV).

Case 1: B(x, y) 6= 0. By rescaling the representatives of [x], [y] we
may assume B(x, y) = 1. Let [z] ∈ PV\{[x]} be arbitrary. If B(x, z) 6=
0, scale z so B(x, z) = 1 too. Taking U = F〈x, y〉 and Ũ = F〈x, z〉,
there is an obvious isometry θ : U → Ũ sending x 7→ x, y 7→ z. By
II.C.9, this is the restriction of (the self-isometry of V given by) some
g ∈ Spn(F). So [z] ∈ S and we are done in this sub-case.

If B(x, z) = 0, there exists w ∈ V such that B(x, w) = 1 = B(z, w),
hence (by II.C.9) g ∈ Spn(F) sending x 7→ x and y 7→ w. So [w] ∈ S.
But II.C.9 also gives g′ ∈ Spn(F) sending w 7→ w and x 7→ z, and
this gives [z] ∈ S.

8defined in the proof
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Case 2: B(x, y) = 0. There exists u ∈ V such that B(x, u) = 1 and
B(y, u) = 0. (Take a symplectic basis with v1 = x and v2 = y, and
let u := u1.) Let z ∈ F〈x, u〉⊥\{0} be arbitrary, and consider the
map from U := F〈x, u, y〉 to Ũ := F〈x, u, z〉 fixing x, u and sending
y 7→ z. Since y ∈ F〈x, u〉⊥\{0}, this is an isometry, and so (by II.C.9)
is induced by some g ∈ Spn(F). This gives [z] ∈ S, but this time [z]
wasn’t arbitrary enough and we’re not quite finished.

But since B|F〈x,u〉⊥ is nondegenerate, we can choose z so that
B(z, y) 6= 0 (and [z], [y] ∈ S). This puts us in Case 1, so we are
done now. �

For the next result, recall that Gx denotes the stabilizer of x.

II.C.21. LEMMA. Let G act on X, with K E G the kernel of the corre-
sponding homomorphism (from G → SX). Then G/K is simple if:

(i) G acts primitively on X;
(ii) G = DG; and

(iii) there exist x ∈ X and an abelian subgroup A E Gx such that the
conjugates {gAg−1}g∈G generate G.

PROOF. Suppose K < H E G. Then G stabilizes the partition
of X into H-orbits.9 Since (by (i)) G acts primitively, this partition is
either the one into singletons (H acts trivially) or the entire set (H
acts transitively). Since H 6≤ K, it must be the latter.

Let x ∈ rx satisfy (iii). Since H acts transitively, for every g ∈ G
there is an h ∈ H with hx = gx. So G = HGx =⇒ G D HA =⇒
HA contains every gAg−1 =⇒ HA = G (by (iii)) =⇒ G/H =

A/(H ∩ A) is abelian =⇒ D(G/H) = {1} =⇒ H ≥ DG =⇒
H ≥ G (by (ii)) =⇒ H = G. Conclude that G/K has no nontrivial
proper normal subgroup, i.e. is simple. �

II.C.22. THEOREM. The projective symplectic group

PSpn(F) := Spn(F)/{±1}

is simple for |F| > 3.
9See the proof of I.L.6.
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PROOF. Consider the action of G := Spn(F) on X := PV. We ap-
ply I.C.21, in which (i) and (ii) hold by II.C.20 and II.C.18. It remains
to check (iii): fix x ∈ V\{0}, and set A := {τx,c | c ∈ F}. This is
abelian, and normal in Gx since (for γ ∈ Gx) γτx,cγ−1 = τγ(x),c = τx,c.
Moreover, its conjugates give all transvections by II.C.13(ii), which
generate G by II.C.15. �

II.C.23. REMARK. In complex algebraic geometry, we frequently
study the topology of families of projective hypersurfaces, which is
to say solution sets (in PN(C)) of homogeneous polynomials in pro-
jective space as the coefficients vary. One typically considers an open
subset U of the parameter space obtained by deleting those tuples of
coefficients which make the variety singular, and calculates the ac-
tion of various loops (around this deleted set) on a Q-vector space
H called the cohomology (of some fixed variety in the family). This
space represents “topological cycles modulo boundaries”, and car-
ries a nondegenerate bilinear form Q coming from intersection of
cycles.

The action, which is called monodromy, measures how cycles do
or do not return to themselves under analytic continuation, although
the intersection numbers are always preserved. So it produces a ho-
momorphism ρ : π1(U) → Aut(H, Q) from the fundamental group
of the parameter space to the isometry group of (H, Q), which is
symplectic when the (complex) dimension of the hypersurfaces is
odd (i.e. N is even). One can show that the local monodromy trans-
formations (images of simple loops) produce essentially all of the
integral transvections.

These are not all of the rational transvections, and so we don’t get
that ρ is surjective. Rather, what we are able to conclude from this is
that the smallest linear algebraic group (over Q) containing the im-
age of ρ is the full symplectic group Aut(H, Q). It is still a beautiful
and important statement. You can think of it as a topological ana-
logue of the statement that the Galois group of a general polynomial
of degree n is the full Sn.


