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II.D. Quadratic forms and orthogonal groups

We continue to take V' an n-dimensional vector space over a field
FF of characteristic different from 2, with basis {¢; }. A form of degree
1 is just an element of V. For higher degree, we need the notion of
symmetric powers of a vector space W. Though this is a bit off-topic,
it is important enough to explain properly and clarifies the definition
of quadratic forms.

First, tensor powers: we have already defined W ® W, and one
extends this by induction to W&k := W @ W**~1 (also written TFW).
Now, this carries two obvious actions of &y, by 0.(a1 ® - - - ® ag) =
Ap(1) ® *++ @ dg(r) OF sgN(0)as (1) ® -+ @ ag(r). The invariant sub-
spaces in Wk of these actions are the symmetric k-tensors Sym* (W)
and the alternating k-tensors Alt*(W), respectively.

A related construction is to take the entire tensor algebra TW :=
Dr>0W=F and divide out by the ideal generated by elements x @y —
Y ®xor x ®Y +y ® x, yielding the symmetric algebra SW = @>oSkW
and the exterior algebra A\W = @9 A*W. We already saw an ex-
plicit description of the latter in [Algebra I, V.A.12]; similarly, SW is
nothing but the space of polynomials in a basis of W, with S*W the
polynomials which are homogeneous of degree k.

The spaces S*W and A\* W are called the k" symmetric resp. exte-
rior power of W. Unlike SymkW and Alt'W, they are not subspaces
of V®F and so the elements aren’t written with “®”, but rather as
(linear combinations of symbols) wy - - - wy resp. wy A - - - A wg. There
are, however, natural maps Sym*(W) — S*W and Alt"(W) — AFW
which are isomorphisms provided k! does not divide char(IF). More-
over, one has in general that Sym*(W) = (kW)Y and AltF(W) =
(N W)Y

We saw in [loc. cit.] that A¥ W has dimension (}) if dim W = n.
In the HW, you'll show that dim(SKW) = ("571),

I1.D.1. DEFINITION. (a) A form of degree k on V is an element

F e S5VY) = (Sym‘v)Y,
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That is, F is a homogeneous polynomial } . ¢ Ie;{ X

-e; of degree k
in the e)’’s, where the sum is over multi-indices I = (iy, ..., i) with
i< <

(b) Equivalently, we may regard F as a map from V to [F, by ap-

plying it to the element v ® - - - ® v € Sym*V. Explicitly, this gives

n
v = Zaiei — F(v Z Craj, - - - aj,..
i=1 1=k

More specifically, a quadratic form is a form of degree 2, or equiv-

alently a map Q: V — FF such that

(i) Q(ax) = a®Q(x) [Q homogeneous of degree 2]
(i) B(x,y) :== Q(x +vy) — Q(x) — Q(y) is bilinear.

Let’s check the equivalency carefully here: given Q = };<;cije/’e/ €

(ILD.2) {

S2(VV), we clearly have (i); and (i) follows by computing (with x =
Yixieiand y =} yie;)

Y cij(xi +yi) (xj +yp) = Y cixixg = Y yiyp = Y cij(xiy; + xjyi)-

i<j i<j i<j i<j
For the converse, assuming (i) and (ii), observe that
Q(ax + by) = Q(ax) + Q(by) + B(ax, by)
= a®Q(x) + b*Q(y) + abB(x,y);
iterating this gives
Q(Xiaie;) = Yia7Q(ei) + LicjaiaiB(ei e)) = L) cijaia;

where c;; = Q(e;) and ¢;j = B(e;, ¢j) (i < j). Clearly this agrees with
ILD.1(b).

Symmetric bilinear forms.
Notice one other thing here: that the bilinear form in (II.D.2)(ii) is
symmetric. So the entries of [B], are (B(e;, ¢j) =) ¢;; fori < j, cj; fori >

jrand (fori = j) B(e;, e;) = Q(2¢;) —2Q(e;) = 4Q(e;) —2Q(e;) = 2cy;.
Since we can recover Q from B (because char(IF) # 2), the problems
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of classifying quadratic forms, studying their isometry groups, etc.
can be thought of in terms of B.

So let B be a symmetric bilinear form on V. As usual, the rank
of B is that of any [B],, which is independent of the choice of basis
since cogredience preserves rank. We have the following analogue
of II.C.1:

I1.D.3. PROPOSITION. Writing r := rank(B), there exists a basis
e ={¢e1,...,&;€41,...,€n} in which [B], = diag{by,...,b,;0,...,0},
with b; € F*.

PROOF. Begin with our arbitrary basis ej,...,e,;. The result is
trivial if B is zero, so assume otherwise.

If every B(e;, e;) = 0, then some 2B(e;, ;) = B(e; +ej,e; +¢j) —
B(ej,e;) — B(ej,¢j) = B(e; + ej,e; + ¢;) must be nonzero, and we can
perform a slight change of basis to make this ¢; + ¢; one of our basis
elements. After reordering, we may assume that by := B(e,e1) # 0.
Replace each ¢j1 by f; := ej — B(ej, el)bflel, and note that

B(el,f]') :B(el,ej)—B(ej,el)ble(el,el) =0 — f] EIF<€1>L.
At this point we have written V as the direct sum of U; := F(ey)
(with basis €1 := e1) and Uf (with basis f,. .., fu).

Inductively assume that we have a k-dimensional subspace Uy :=
F(ey, ..., ec) with B(ej, e;) = b;d;; (b; # 0)and V = U @ LIkL. Then
either B|; L= 0 (and any basis of U~ will do) or the last paragraph

provides g1 € UkL (with nonzero by,q := B(ex,1,€k41)) and a de-

composition UkL = F(exiq) ® Vi, where Vi g = llkL N Flepq)t.
Setting Uy 1 = Uy @ F(er 1), we see that V. = Ui 1 & Vg and
Vigr = ukL+1' which completes the inductive step. 0

In view of II.A.2(ii), we have the immediate

IL.D.4. COROLLARY. Any symmetric matrix in M, (IF) is cogredient
to a diagonal one.

When F is algebraically closed, we can scale each ¢; by 1//b; to
make the new {b;} all 1. This yields
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ILD.5. COROLLARY. If F = T, then two symmetric n x n matrices
are cogredient if and only if they have the same rank.

This describes the situation over C. When F = IR, it is more
interesting:

I1.D.6. SYLVESTER’S THEOREM. (a) Two diagonal matrices in M, (IR)
are cogredient (via some S € GL,,(R)) <= the numbers of positive, neg-
ative, and zero diagonal entries are the same.

(b) Given a symmetric bilinear form B on a real vector space V, let B,
be as in 11.D.3. Define the signature of B (and the symmetric matrix B,
for any e) to be the pair (p,q),"° where p [resp. q] denotes the number of
positive [resp. negative] {b;}. This is well-defined.

(c) Two symmetric bilinear forms on V [resp. two symmetric matrices
in My (R)] are equivalent [resp. cogredient] if and only if they have the
same signature.

PROOF. The well-definedness claimed in (b) follows from (a), and
(c) is immediate from (a) and II.D.3. The “if” in (a) is also clear.

To see the “only if” in (a), recall from II.A.9 that a pair of cogredi-
ent (symmetric) matrices may be regarded as the matrices of a single
(symmetric) bilinear form B with respect to two bases. So let € be a
basis of the type in I1.D.3, with b; > Ofor 1 <i < pand b; < O for
p+1<i<r=p+g;and let ¢ be another, with invariants p’,¢’,7’.
(We can make this assumption on the ordering of the positive and
negative entries because permutation matrices satisfy P~ = P so
we can conjugate by them for free.)

Obviously rank does not change under cogredience, so r = r'.
To see that p = p’, observe that U; := R(ey,...,¢ep) and U :=
1R<€’p,+1, ...,&,) have dimensions p and n — p’. If z € Uy N Uy, then
z =YV ae; = B(z,z) = ¥} a?b; > 0 with equality iff z = 0;

while z = Y a'e. — B(z,z) < 0. This forces z = 0 hence

j=p'+1 7%
Uy NU, = {0}, which impliesn > p+ (n—p’) thus p’ > p. A
symmetric argument gives p > p’, hence equality. O

105ome authors, including [Jacobson], consider the signature to be the number
p — q. What we call signature records both this number and the rank p +¢q = r.
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Henceforth we assume that B is nondegenerate, i.e. that r = n. We in-
troduce two more properties which are invariant under equivalence:

I1.D.7. DEFINITION. A nondegenerate symmetric bilinear form B
is called

(i) isotropic if v € V\{0} with B(v,v) = 0.
(i) universal if B(v,v) = b has a solution for every b € F*.

(These definitions also work for Q;'! one speaks of Q or B “repre-
senting 0” when (i) holds, or “representing b” when (ii) holds.) If (i)
fails, B [resp. Q] is anisotropic.

When might (i) and (ii) be interesting, and help organize equiva-
lence classes of nondegenerate B’s? If F = TF they always hold, and
if F = R they hold precisely when the signature is indefinite (p and
g both nonzero). So they are no help there. On the other hand, con-
sider the form (or rather matrix) diag(1, —b) € M(Q) of signature
(1, —1) (which makes sense since Q has one embedding in R). Does
this represent 0, i.e. is it isotropic? We are asking for a nontrivial
solution to x> — by? = 0! Obviously this exists exactly if b is a square
in Q. The question of whether the form represents nonzero numbers
gives instances of Pell’s equation.

My point is that, with [F = Q, there are (many) more equivalence
classes, cogredience itself is a bit weird (as you'll see in HW), and the
additional “invariants” supplied by this definition help make sense
of things. The Hasse-Minkowski theorem, which also has generaliza-
tions to number fields, says (among other things) that a quadratic
form represents 0 over Q precisely when it represents 0 over R and
Qy (the p-adic rationals) for each p. It has a generalization to number
fields and other “global fields” and was historically the first main in-
stance of something called the “local-global principle” (Q being the
“global”; R and Q, the “local”).

11though for the two versions to be the same, one should use 2Q, since B(v,v) =

2Q(v).
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But this is a very deep result, and instead we’ll content ourselves
with something simple, namely a classification result in the finite
field case.

IL.D.8. LEMMA. B isotropic == B universal.

PROOF. We have v € V\{0} with B(v,v) = 0. Let b € F* be
given. Since B is nondegenerate, there is a u € V with B(u,v) =
1. Taking w := av + u, we have B(w,w) = a+ B(u,u); and then
choosing a := b — B(u,u) gives B(w, w) = b. O

IL.D.9. LEMMA. If |F| < oo and n > 2, then any (nondegenerate) B is
universal.

PROOF. By passing to a subspace, it suffices to prove this for
n = 2; and we may assume B anisotropic (otherwise we’re done
by IL.D.8). Using I1.D.3, we have [B|; = diag(a,b) with ab # 0 and
ax? + by? = 0 insoluble in IF x F\{(0,0)}; the claim is that, for any
¢ € F*, we can solve ax? + by? = c.

Clearly we can assume a = 1 (otherwise divide both equations by
a). So the insolubility of x> + by?> = 0 says that [E := F(v/—b)/Fisa
nontrivial field extension. The other equation is then Pell’s equation
for finite fields: N, . (x +v/—by) = c. Writing g := ||, we have
Aut(E/F) = {1, ¢} where ¢(u) := u?. So Ny ;. (u) = u-u? = ul™.
Since E* is a cyclic group of order 4> — 1, we should think of N,

/FE

as multiplication by g+ 1in Z > _;, whence |ker(Ny ;)| = g+ 1and
im(Ny )| = g — 1 = |FF*|. So the norm surjects onto IF* and we are
done. ]

I1.D.10. THEOREM. Assume |[F| < oco. Then two nondegenerate sym-
metric bilinear forms on V [resp. two symmetric matrices in M, (IF)] are
equivalent [resp. cogredient] if and only if their discriminants [resp. deter-
minants] are equal in TF* / (IF*)2.

PROOF. It will suffice to show (a) that any such B has a matrix of
the form diag(1,...,1,A), and (b) that two such matrices are cogre-
dient iff the ratio of A’s is a square.
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(a) In the proof of IL.D.3, B, L is universal for 0 < k < n —1 by
I1.D.9. So we can choose &1 € Uj- so that b1 = B(ggy1,€641) = 1,
until we reach ¢, (since dim(U;- ;) = 1, ILD.9 doesn’t apply).

(b) If B ~ B/, then A/A' € (F*)? by ILA.2(iii). Conversely, if
A" = a2, the matrices are cogredient by S = diag(1,...,1,&). O

Orthogonal groups.

In parallel with the alternating case, we make the following

I1.D.11. DEFINITION. (i) Let V be an [F-vector space of dimension
n, and B a nondegenerate symmetric bilinear form. Then (V,B) is
called an orthogonal vector space, and B an orthogonal form.

(ii) The group of (self-)isometries of (V, B),
O(V,B) :={T € Autg(V) | B(Tx,Ty) = B(x,y) (Vx,y € V)},
is called an orthogonal group.

(iii) A basis ¢ in which [B]; is diagonal is called an orthogonal basis
for (V, B).

In (ii), I didn’t write “O, (IF)” in analogy with Sp,, (IF), because the
isomorphism class of the group depends on the equivalence class of
the orthogonal form, and there may be lots of these depending on F.

You will recall from §II.C that, regardless of the field, there is
only one equivalence class of symplectic form in each (even) dimen-
sion. For orthogonal forms, we know that this is at least true for
algebraically closed fields; so it makes sense to write O,(C). For
F = R, we know that the classes are parametrized by the signature
(p,q9) = (p,n — p) of B; and so while “O,(R)” would be ambigu-
ous, O(p,q) (2 O(gq,p)) is well-defined. These orthogonal groups
are called indefinite if p,q > 0, and definite in the remaining case

O(n,0) = O(0,n) =: O(n).

The role of transvections in this setting is played by the orthogo-
nal reflections
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in the hyperplane F(u)~. Indeed, applying this twice gives

X, U . X, U 4 u,u ’ o
pu (x - 23(”,”) 1/l> = X — ZB(H,M) u— 2 B(u,u) u = x,

and they fix vectors orthogonal to 1. You should check that they are
orthogonal. The following result is proved in [Jacobson]:

IL.D.12. THEOREM. O(V, B) is generated by orthogonal reflections.

Since reflections have determinant —1, it is not true that all or-
thogonal transformations have determinant 1. Rather, there is a nor-
mal subgroup of index 2, the special orthogonal group SO(V, B),
obtained by intersecting O(V, B) with SL, (FF).

However, I1.D.12 still does yield that the center of O(V,B) is
{#£1}, and that the quotient of D(O(V, B)) by its center ({1} or { £1})
is simple (assuming |[F| > 3, n > 3, and B isotropic). But the proof is
more complicated and we refer to [op. cit.]. For [F = C, the derived
group D(O(V,B)) is just SO, (C).



