
II.E. HERMITIAN FORMS AND UNITARY GROUPS 159

II.E. Hermitian forms and unitary groups

Assuming as usual that char(F) 6= 2, let E/F be a field extension
of degree 2, and ρ ∈ Aut(E/F) the generator (with ρ2 = idE); we
shall write ᾱ for ρ(α). Let V be a vector space of dimension n over
E; considering this as a vector space of dimension 2n over F defines
the so-called Weil-restriction W := ResE/FV. Remember that we can
also think of E as a 2-dimensional vector space over F.

II.E.1. DEFINITION. (i) A matrix h = (hij) is Hermitian if hji = h̄ij

(∀i, j), i.e. if h∗ := th̄ = h. It is skew-Hermitian if h∗ = −h.

(ii) A Hermitian form on V is an element

H ∈ HomF(W ⊗W, E)

(or, if you prefer, a map from V ×V → E) satisfying

(a) H(αx + βy, v) = αH(x, v) + βH(y, v),
(b) H(v, αx + βy) = ᾱH(v, x) + β̄H(v, y), and
(c) H(u, v) = H(v, u).

(Actually, (a) and (c) imply (b).) The pair (V, H) is called a Hermitian
vector space.

Given a basis e = {e1, . . . , en} of V over E, and writing [H]e =: h,
computing H(∑i uiei, ∑j vjej) immediately yields

(II.E.2) H(u, v) = t[u]eh[v]e.

Clearly, (c) is equivalent to

t[u]eh̄[v]e = t[v]eh[u]e
(
= t(t[v]eh[u]e) = t[u]eth[v]e

)
(∀u, v ∈ V)

and thus to h being a Hermitian matrix.
As was the case for symmetric and alternating bilinear forms,

there is a particularly nice basis that puts this matrix in a “standard
form”:

II.E.3. THEOREM. Let (V, H) be a Hermitian vector space over E.
Then V has a basis ε = {ε1, . . . , εn} for which H(εi, ε j) = bjδij, with
bj ∈ F∗ for 1 ≤ j ≤ r and bj = 0 for r < j ≤ n.
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PROOF. Suppose that H(u, u) = 0 for all u ∈ V. If H is not
identically zero, then there exist u, v with H(u, v) = 1. Then 0 =

H(u + v, u + v) = H(u, v) + H(v, u) = H(u, v) + H(u, v) = 2, a
contradiction. So, assuming H is not trivial, there is an ε1 ∈ V
with b1 := H(ε1, ε1) 6= 0. By Hermitian symmetry (property (c)
in II.E.1(ii)), b1 = b̄1 hence b1 ∈ F∗.

Inductively suppose we have ε1, . . . , εk with H(εi, ε j) = biδij, and
let Uk be their span. We have V = Uk ⊕U⊥k since we can write any
x ∈ V as y + (x − y) where y := ∑k

j=1 b−1
j H(x, ε j)ε j. Apply the last

paragraph to H|U⊥k to complete the inductive step. �

Since a change of basis (with matrix S) transforms h 7→ tShS̄, we
can evidently multiply each bj by anything in N

E/F
(E∗) (i.e. “abso-

lute squares” αᾱ) for free. If E = C and F = R, the same argument as
in the proof of Sylvester’s theorem shows, conversely, that we can-
not change the number p and q of positive resp. negative bj’s. So
the Hermitian forms in this case are completely classified by the pair
(p, q), which is again called the signature.

The associated bilinear forms.

As Definition II.E.1 points out, while H is only E-sesquilinear (this
is (a) and (b)), it is F-bilinear. That means its “real” and “imagi-
nary” parts (so to speak) should yield F-bilinear forms on W, giv-
ing us access to results we have already proved in this case. In-
deed, writing E = F(

√
f ) (as we can do when char(F) 6= 2), define

B′, B′′ ∈ Hom(W ⊗W, F) by

(II.E.4) H(w, u) =: B′(w, u)−
√

f B′′(w, u).

Equivalently, we can set

(II.E.5)

 B′(w, u) := 1
2 (H(w, u) + H(u, w)) and

B′′(w, u) := −1
2
√

f
(H(w, u)− H(u, w)) .

which makes it clear that B′ is symmetric and B′′ alternating.
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Now consider the multiplication-by-
√

f map µ ∈ EndF(W). This
has minimal polynomial x2 − f , hence “diagonalizes over E with ρ-
conjugate eigenspaces and eigenvalues”:

(II.E.6) W ⊗F E ∼= Eµ(
√

f )⊕ Eµ(−
√

f ) ∼= V ⊕ V̄,

where “V̄” is a copy of V on which E acts through ρ. Sending ξ 7→
(ξ, ξ̄) (acting on RHS(II.E.6)) thus yields an embedding

EndE(V) ↪→ EndF(W)

with image contained in EndF(W)µ, i.e. the endomorphisms com-
muting with µ. In fact, this is the image, since any F-linear endomor-
phism commuting with µ simultaneously diagonalizes with µ hence
sends (over E) V → V and V̄ → V̄, and takes the form (ξ, ξ̄).

II.E.7. REMARK. As an aside here, it is useful to keep in mind
that if you represent C as an R-vector-space with basis {1, i}, then
multiplication by α = a + bi is represented by the matrix

( a −b
b a

)
.

This matrix commutes with [µ] =
( 0 −1

1 0

)
(multiplication by

√
f = i)

and diagonalizes over C as diag(a + bi, a− bi).
That is, you begin with C as a 1-dimensional vector space over

itself, Weil-restrict to W := ResC/RC = R〈1, i〉, then extend coeffi-
cients to C via W ⊗R C ∼= C⊕ C. The two copies of C are spanned
by 1

2

( 1
−i
)

and 1
2

(
1
i
)
, and multiplication by α acts through α on the

first copy and ᾱ on the second.

Returning to our bilinear forms B′, B′′ over F, for arbitrary w, u ∈
W (= V as a set) we compute

B′′(w, µu) = −1
2
√

f
(H(w, µu)− H(µu, w))

= −1
2
√

f

(
−
√

f H(w, u)−
√

f H(u, w)
)

= 1
2 (H(w, u) + H(u, w)) = B′(w, u),
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which also implies B′′(w, u) = 1
f B′(w, µu). One consequence is that

we can write H in terms of just B′ or B′′:
(II.E.8)

H(w, u) = B′(w, u)− 1√
f
B′(w, µu) = −

√
f B′′(w, u) + B′′(w, µu).

Another is that, given a transformation T ∈ EndF(W)µ, we have

T ∈ Aut(W, B′) ⇐⇒ B′(Tw, Tu) = B′(w, u) (∀w, u ∈W)

⇐⇒ B′′(Tw, µTu) = B′′(w, µu) (∀w, u ∈W)

⇐⇒
z=µu

B′′(Tw, Tz) = B′′(w, z) (∀w, z ∈W)

⇐⇒ T ∈ Aut(W, B′′).

The upshot is that we needn’t worry about both B′ and B′′, so we
will make a choice and drop B′.

II.E.9. REMARK. There is a different perspective on how H and B′′

are related. Using the identification of V with W (as sets), we map
V = W ↪→ W ⊗F E ∼= Eµ(

√
f ) ⊕ Eµ(−

√
f ), denoting the image

of v by (ı(v), ı̄(v̄)). (In the setting of II.E.7, the effect is to send α =

a+ bi 7→ α
2

( 1
−i
)
+ ᾱ

2

(
1
i
)
.) This defines isomorphisms ı : V → Eµ(

√
f )

and ı̄ : V̄ → Eµ(−
√

f ), explaining the RHS of (II.E.5) a little better.
That is, we can write v = ı(v) + ı̄(v̄) in W ⊗F E.

Writing B′′E for the E-linear extension of B′′ to W⊗F E, I claim that
B′′E(ı(v1), ı(v2)) = 0 = B′′E(ı̄(v̄1), ı̄(v̄2)). To see this, observe that12

B′′(µw, µz) = B′(µw, z) = B′(z, µw) = f B′′(z, w) = − f B′′(w, z)

hence [by E-linear extension]

− f B′′(ı(v1), ı(v2)) = B′′(µ(ı(v1)), µ(ı(v2)))

= B′′(
√

f ı(v1)),
√

f ı(v2)) = f B′′(ı(v1), ı(v2)).

The upshot that Eµ(
√

f ) and Eµ(−
√

f ) are isotropic for B′′E, which
only pairs them with each other.

12Alternatively here, you could just take the “imaginary” part of H(µv1, µv2) =
H(
√

f v1,
√

f v2) = − f H(v1, v2) in (II.E.4).
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Using this, (II.E.8), and anti-symmetry of B′′E, we calculate

H(v1, v2) = H (ı(v1) + ı̄(v̄1), ı(v2) + ı̄(v̄2))

=−
√

f B′′E (ı(v1) + ı̄(v̄1), ı(v2) + ı̄(v̄2))

+B′′E(ı(v1) + ı̄(v̄1),
√

f ı(v2)−
√

f ı̄(v̄2))

= −2
√

f B′′E (ı(v1), ı̄(v̄2)) .

That is, we can view the Hermitian form on v1, v2 in terms of the (E-
linearly extended) symplectic form applied to v1 ∈ V and v2 ∈ V̄ in
RHS(II.E.6).

Unitary groups.

Henceforth we assume that our Hermitian form H is nondegen-
erate, which makes B′′ (and B′) nondegenerate by (II.E.8). However,
I will write Sp(W, B′′) rather than Sp2n(F) for its isometries, since
we have to worry about how this particular copy of the symplectic
group is situated relative to the action of µ.

II.E.10. DEFINITION. (i) The isometry group

U(V, H) := {T ∈ AutE(V) | H(Tu, Tv) = H(u, v) (∀u, v ∈ V)}

is called a unitary group.
(ii) When E/F is C/R, the isomorphism class of this group is

determined by the signature (p, q) of H, and we write U(V, H) ∼=
U(p, q).

Recall from §II.B that the sesquilinearity of H means that U(V, H)

is not a linear algebraic group over E, but only over F. As a final
result, we can use our work above to see this more explicitly.

II.E.11. PROPOSITION. We have

U(V, H) ∼= Sp(W, B′′) ∩ ResE/F(Aut(V)) = Sp(W, B′′)µ.

PROOF. We prove that the end terms are isomorphic. See the re-
mark below for the middle term.

Given T ∈ U(V, H), T is E-linear so commutes with multipli-
cation by

√
f (i.e. µ). Moreover, H(Tu, Tv) = H(u, v) becomes by
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(II.E.5) B′′(Tu, Tv) = B′′(u, v) (where we can of course interpret T as
an F-linear automorphism of W). Hence T ∈ Sp(W, B′′).

Conversely, if T ∈ Sp(W, B′′) ( =⇒ T is F-linear) and commutes
with µ, then it is E-linear, so belongs to AutE(V). Then one ap-
plies (II.E.8) to get from B′′(Tu, Tv) = B′′(u, v) (and Tµ = µT) to
H(Tu, Tv) = H(u, v). �

II.E.12. REMARK. To understand the middle term in II.E.11, the
main point is that the Weil restriction ResE/F(AutE(V)) is precisely
AutF(W)µ, i.e. automorphisms of W commuting with µ. As with
vector spaces, the meaning of ResE/F is to realize a linear algebraic
group over E as one over F. The proof of this is little more than
“F-linear plus commutes with µ” = “E-linear”.

But it is useful to think about what this means explicitly: given
a basis {e1, . . . , en} of V/E, {e1,

√
f e1, . . . , en,

√
f en} gives a corre-

sponding basis of W/F. On the level of matrices with respect to
these bases, ResE/F replaces each entry α = a + b

√
f of an n × n

matrix over E by the 2× 2 block
(

a f b
b a

)
, thus producing a 2n× 2n

matrix over F. One easily checks that such matrices are exactly the
µ-invariant ones, where µ is the block-diagonal matrix

(
0 f
1 0

)
; this is

left to you.


