II.E. Hermitian forms and unitary groups

Assuming as usual that $\operatorname{char}(\mathbb{F}) \neq 2$, let \mathbb{E}/\mathbb{F} be a field extension of degree 2, and $\rho \in \operatorname{Aut}(\mathbb{E}/\mathbb{F})$ the generator (with $\rho^2 = \operatorname{id}_{\mathbb{E}}$); we shall write $\overline{\alpha}$ for $\rho(\alpha)$. Let *V* be a vector space of dimension *n* over \mathbb{E} ; considering this as a vector space of dimension 2n over \mathbb{F} defines the so-called *Weil-restriction* $W := \operatorname{Res}_{\mathbb{E}/\mathbb{F}} V$. Remember that we can also think of \mathbb{E} as a 2-dimensional vector space over \mathbb{F} .

II.E.1. DEFINITION. (i) A matrix $h = (h_{ij})$ is Hermitian if $h_{ji} = \bar{h}_{ij}$ $(\forall i, j)$, i.e. if $h^* := {}^t \bar{h} = h$. It is skew-Hermitian if $h^* = -h$.

(ii) A Hermitian form on *V* is an element

$$H \in \operatorname{Hom}_{\mathbb{F}}(W \otimes W, \mathbb{E})$$

(or, if you prefer, a map from $V \times V \rightarrow \mathbb{E}$) satisfying

(a) $H(\alpha x + \beta y, v) = \alpha H(x, v) + \beta H(y, v)$, (b) $H(v, \alpha x + \beta y) = \overline{\alpha} H(v, x) + \overline{\beta} H(v, y)$, and (c) $\overline{H(u, v)} = H(v, u)$.

(Actually, (a) and (c) imply (b).) The pair (V, H) is called a **Hermitian** vector space.

Given a basis $e = \{e_1, ..., e_n\}$ of *V* over \mathbb{E} , and writing $[H]_e =: h$, computing $H(\sum_i u_i e_i, \sum_j v_j e_j)$ immediately yields

(II.E.2)
$$H(u,v) = {}^{t}[u]_{e}\boldsymbol{h}\overline{[v]_{e}}.$$

Clearly, (c) is equivalent to

$${}^{t}\overline{[u]_{e}}\bar{h}[v]_{e} = {}^{t}[v]_{e}h\overline{[u]_{e}} \left(= {}^{t}({}^{t}[v]_{e}h\overline{[u]_{e}}) = {}^{t}\overline{[u]_{e}}{}^{t}h[v]_{e} \right) \quad (\forall u, v \in V)$$

and thus to *h* being a Hermitian matrix.

As was the case for symmetric and alternating bilinear forms, there is a particularly nice basis that puts this matrix in a "standard form":

II.E.3. THEOREM. Let (V, H) be a Hermitian vector space over \mathbb{E} . Then V has a basis $\varepsilon = {\varepsilon_1, ..., \varepsilon_n}$ for which $H(\varepsilon_i, \varepsilon_j) = b_j \delta_{ij}$, with $b_j \in \mathbb{F}^*$ for $1 \le j \le r$ and $b_j = 0$ for $r < j \le n$. PROOF. Suppose that H(u, u) = 0 for all $u \in V$. If H is not identically zero, then there exist u, v with H(u, v) = 1. Then 0 = $H(u + v, u + v) = H(u, v) + H(v, u) = H(u, v) + \overline{H(u, v)} = 2$, a contradiction. So, assuming H is not trivial, there is an $\varepsilon_1 \in V$ with $b_1 := H(\varepsilon_1, \varepsilon_1) \neq 0$. By Hermitian symmetry (property (c) in II.E.1(ii)), $b_1 = \overline{b}_1$ hence $b_1 \in \mathbb{F}^*$.

Inductively suppose we have $\varepsilon_1, \ldots, \varepsilon_k$ with $H(\varepsilon_i, \varepsilon_j) = b_i \delta_{ij}$, and let U_k be their span. We have $V = U_k \oplus U_k^{\perp}$ since we can write any $x \in V$ as y + (x - y) where $y := \sum_{j=1}^k b_j^{-1} H(x, \varepsilon_j) \varepsilon_j$. Apply the last paragraph to $H|_{U_k^{\perp}}$ to complete the inductive step. \Box

Since a change of basis (with matrix *S*) transforms $h \mapsto {}^{t}Sh\bar{S}$, we can evidently multiply each b_{j} by anything in $N_{\mathbb{E}/\mathbb{F}}(\mathbb{E}^{*})$ (i.e. "absolute squares" $\alpha\bar{\alpha}$) for free. If $\mathbb{E} = \mathbb{C}$ and $\mathbb{F} = \mathbb{R}$, the same argument as in the proof of Sylvester's theorem shows, conversely, that we cannot change the number p and q of positive resp. negative b_{j} 's. So the Hermitian forms in this case are completely classified by the pair (p, q), which is again called the **signature**.

The associated bilinear forms.

As Definition II.E.1 points out, while *H* is only \mathbb{E} -sesquilinear (this is (a) and (b)), it is \mathbb{F} -bilinear. That means its "real" and "imaginary" parts (so to speak) should yield \mathbb{F} -bilinear forms on *W*, giving us access to results we have already proved in this case. Indeed, writing $\mathbb{E} = \mathbb{F}(\sqrt{f})$ (as we can do when char(\mathbb{F}) \neq 2), define $B', B'' \in \text{Hom}(W \otimes W, \mathbb{F})$ by

(II.E.4)
$$H(w, u) =: B'(w, u) - \sqrt{f}B''(w, u).$$

Equivalently, we can set

(II.E.5)
$$\begin{cases} B'(w,u) := \frac{1}{2} (H(w,u) + H(u,w)) \text{ and} \\ B''(w,u) := \frac{-1}{2\sqrt{f}} (H(w,u) - H(u,w)). \end{cases}$$

which makes it clear that B' is symmetric and B'' alternating.

160

Now consider the multiplication-by- \sqrt{f} map $\mu \in \text{End}_{\mathbb{F}}(W)$. This has minimal polynomial $x^2 - f$, hence "diagonalizes over \mathbb{E} with ρ -conjugate eigenspaces and eigenvalues":

(II.E.6)
$$W \otimes_{\mathbb{F}} \mathbb{E} \cong E_{\mu}(\sqrt{f}) \oplus E_{\mu}(-\sqrt{f}) \cong V \oplus \overline{V},$$

where " \overline{V} " is a copy of *V* on which \mathbb{E} acts through ρ . Sending $\xi \mapsto (\xi, \overline{\xi})$ (acting on RHS(II.E.6)) thus yields an embedding

$$\operatorname{End}_{\mathbb{E}}(V) \hookrightarrow \operatorname{End}_{\mathbb{F}}(W)$$

with image contained in $\operatorname{End}_{\mathbb{F}}(W)^{\mu}$, i.e. the endomorphisms commuting with μ . In fact, this *is the image*, since any \mathbb{F} -linear endomorphism commuting with μ simultaneously diagonalizes with μ hence sends (over \mathbb{E}) $V \to V$ and $\overline{V} \to \overline{V}$, and takes the form $(\xi, \overline{\xi})$.

II.E.7. REMARK. As an aside here, it is useful to keep in mind that if you represent \mathbb{C} as an \mathbb{R} -vector-space with basis $\{1, \mathbf{i}\}$, then multiplication by $\alpha = a + b\mathbf{i}$ is represented by the *matrix* $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. This matrix commutes with $[\mu] = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (multiplication by $\sqrt{f} = \mathbf{i}$) and diagonalizes *over* \mathbb{C} as diag $(a + b\mathbf{i}, a - b\mathbf{i})$.

That is, you begin with \mathbb{C} as a 1-dimensional vector space over itself, Weil-restrict to $W := \operatorname{Res}_{\mathbb{C}/\mathbb{R}}\mathbb{C} = \mathbb{R}\langle 1, \mathbf{i} \rangle$, then extend coefficients to \mathbb{C} via $W \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \oplus \mathbb{C}$. The two copies of \mathbb{C} are spanned by $\frac{1}{2} \begin{pmatrix} 1 \\ -\mathbf{i} \end{pmatrix}$ and $\frac{1}{2} \begin{pmatrix} 1 \\ \mathbf{i} \end{pmatrix}$, and multiplication by α acts through α on the first copy and $\overline{\alpha}$ on the second.

Returning to our bilinear forms B', B'' over \mathbb{F} , for arbitrary $w, u \in W$ (= *V* as a set) we compute

$$B''(w, \mu u) = \frac{-1}{2\sqrt{f}} (H(w, \mu u) - H(\mu u, w))$$

= $\frac{-1}{2\sqrt{f}} \left(-\sqrt{f}H(w, u) - \sqrt{f}H(u, w) \right)$
= $\frac{1}{2} (H(w, u) + H(u, w)) = B'(w, u),$

which also implies $B''(w, u) = \frac{1}{f}B'(w, \mu u)$. One consequence is that we can write *H* in terms of just *B'* or *B''*: (II.E.8)

$$H(w,u) = B'(w,u) - \frac{1}{\sqrt{f}}B'(w,\mu u) = -\sqrt{f}B''(w,u) + B''(w,\mu u)$$

Another is that, given a transformation $T \in \operatorname{End}_{\mathbb{F}}(W)^{\mu}$, we have

$$T \in \operatorname{Aut}(W, B') \iff B'(Tw, Tu) = B'(w, u) \quad (\forall w, u \in W)$$
$$\iff B''(Tw, \mu Tu) = B''(w, \mu u) \quad (\forall w, u \in W)$$
$$\iff B''(Tw, Tz) = B''(w, z) \quad (\forall w, z \in W)$$
$$\iff T \in \operatorname{Aut}(W, B'').$$

The upshot is that we needn't worry about both B' and B'', so we will make a choice and drop B'.

II.E.9. REMARK. There is a different perspective on how *H* and *B''* are related. Using the identification of *V* with *W* (as sets), we map $V = W \hookrightarrow W \otimes_{\mathbb{F}} \mathbb{E} \cong E_{\mu}(\sqrt{f}) \oplus E_{\mu}(-\sqrt{f})$, denoting the image of *v* by $(\iota(v), \bar{\iota}(\bar{v}))$. (In the setting of II.E.7, the effect is to send $\alpha = a + b\mathbf{i} \mapsto \frac{\alpha}{2} \begin{pmatrix} 1 \\ -\mathbf{i} \end{pmatrix} + \frac{\bar{\alpha}}{2} \begin{pmatrix} 1 \\ \mathbf{i} \end{pmatrix}$.) This *defines* isomorphisms $\iota: V \to E_{\mu}(\sqrt{f})$ and $\bar{\iota}: \bar{V} \to E_{\mu}(-\sqrt{f})$, explaining the RHS of (II.E.5) a little better. That is, we can write $v = \iota(v) + \bar{\iota}(\bar{v})$ in $W \otimes_{\mathbb{F}} \mathbb{E}$.

Writing $B_{\mathbb{E}}^{\prime\prime}$ for the \mathbb{E} -linear extension of $B^{\prime\prime}$ to $W \otimes_{\mathbb{F}} \mathbb{E}$, I claim that $B_{\mathbb{E}}^{\prime\prime}(\iota(v_1), \iota(v_2)) = 0 = B_{\mathbb{E}}^{\prime\prime}(\bar{\iota}(\bar{v}_1), \bar{\iota}(\bar{v}_2))$. To see this, observe that¹²

$$B''(\mu w, \mu z) = B'(\mu w, z) = B'(z, \mu w) = fB''(z, w) = -fB''(w, z)$$

hence [by E-linear extension]

$$-fB''(\iota(v_1),\iota(v_2)) = B''(\mu(\iota(v_1)),\mu(\iota(v_2)))$$

= $B''(\sqrt{f\iota(v_1)}),\sqrt{f\iota(v_2)}) = fB''(\iota(v_1),\iota(v_2)).$

The upshot that $E_{\mu}(\sqrt{f})$ and $E_{\mu}(-\sqrt{f})$ are isotropic for $B_{\mathbb{E}}''$, which only pairs them with each other.

162

¹²Alternatively here, you could just take the "imaginary" part of $H(\mu v_1, \mu v_2) = H(\sqrt{f}v_1, \sqrt{f}v_2) = -fH(v_1, v_2)$ in (II.E.4).

Using this, (II.E.8), and anti-symmetry of $B_{\mathbb{E}}^{\prime\prime}$, we calculate

$$\begin{split} H(v_1, v_2) &= H\left(\iota(v_1) + \bar{\iota}(\bar{v}_1), \iota(v_2) + \bar{\iota}(\bar{v}_2)\right) \\ &= -\sqrt{f} B_{\mathbb{E}}''\left(\iota(v_1) + \bar{\iota}(\bar{v}_1), \iota(v_2) + \bar{\iota}(\bar{v}_2)\right) \\ &+ B_{\mathbb{E}}''(\iota(v_1) + \bar{\iota}(\bar{v}_1), \sqrt{f}\iota(v_2) - \sqrt{f}\bar{\iota}(\bar{v}_2)) \\ &= -2\sqrt{f} B_{\mathbb{E}}''\left(\iota(v_1), \bar{\iota}(\bar{v}_2)\right). \end{split}$$

That is, we can view the Hermitian form on v_1 , v_2 in terms of the (\mathbb{E} -linearly extended) *symplectic* form applied to $v_1 \in V$ and $v_2 \in \overline{V}$ in RHS(II.E.6).

Unitary groups.

Henceforth we assume that our Hermitian form *H* is nondegenerate, which makes B'' (and B') nondegenerate by (II.E.8). However, I will write Sp(W, B'') rather than $Sp_{2n}(\mathbb{F})$ for its isometries, since we have to worry about how this particular copy of the symplectic group is situated relative to the action of μ .

II.E.10. DEFINITION. (i) The isometry group

$$U(V,H) := \{T \in \operatorname{Aut}_{\mathbb{E}}(V) \mid H(Tu,Tv) = H(u,v) \; (\forall u,v \in V)\}$$

is called a **unitary group**.

(ii) When \mathbb{E}/\mathbb{F} is \mathbb{C}/\mathbb{R} , the isomorphism class of this group is determined by the signature (p,q) of H, and we write $U(V,H) \cong U(p,q)$.

Recall from §II.B that the sesquilinearity of *H* means that U(V, H) is not a linear algebraic group over \mathbb{E} , but only over \mathbb{F} . As a final result, we can use our work above to see this more explicitly.

II.E.11. PROPOSITION. We have

 $U(V,H) \cong \operatorname{Sp}(W,B'') \cap \operatorname{Res}_{\mathbb{E}/\mathbb{F}}(\operatorname{Aut}(V)) = \operatorname{Sp}(W,B'')^{\mu}.$

PROOF. We prove that the end terms are isomorphic. See the remark below for the middle term.

Given $T \in U(V, H)$, *T* is \mathbb{E} -linear so commutes with multiplication by \sqrt{f} (i.e. μ). Moreover, H(Tu, Tv) = H(u, v) becomes by

(II.E.5) B''(Tu, Tv) = B''(u, v) (where we can of course interpret *T* as an **F**-linear automorphism of *W*). Hence $T \in Sp(W, B'')$.

Conversely, if $T \in \text{Sp}(W, B'')$ ($\implies T$ is \mathbb{F} -linear) and commutes with μ , then it is \mathbb{E} -linear, so belongs to $\text{Aut}_{\mathbb{E}}(V)$. Then one applies (II.E.8) to get from B''(Tu, Tv) = B''(u, v) (and $T\mu = \mu T$) to H(Tu, Tv) = H(u, v).

II.E.12. REMARK. To understand the middle term in II.E.11, the main point is that the Weil restriction $\operatorname{Res}_{\mathbb{E}/\mathbb{F}}(\operatorname{Aut}_{\mathbb{E}}(V))$ is precisely $\operatorname{Aut}_{\mathbb{F}}(W)^{\mu}$, i.e. automorphisms of W commuting with μ . As with vector spaces, the meaning of $\operatorname{Res}_{\mathbb{E}/\mathbb{F}}$ is to realize a linear algebraic group over \mathbb{E} as one over \mathbb{F} . The proof of this is little more than " \mathbb{F} -linear plus commutes with μ " = " \mathbb{E} -linear".

But it is useful to think about what this means explicitly: given a basis $\{e_1, \ldots, e_n\}$ of V/\mathbb{E} , $\{e_1, \sqrt{f}e_1, \ldots, e_n, \sqrt{f}e_n\}$ gives a corresponding basis of W/\mathbb{F} . On the level of matrices with respect to these bases, $\operatorname{Res}_{\mathbb{E}/\mathbb{F}}$ replaces each entry $\alpha = a + b\sqrt{f}$ of an $n \times n$ matrix over \mathbb{E} by the 2 × 2 block $\begin{pmatrix} a & fb \\ b & a \end{pmatrix}$, thus producing a $2n \times 2n$ matrix over \mathbb{F} . One easily checks that such matrices are exactly the μ -invariant ones, where μ is the block-diagonal matrix $\begin{pmatrix} 0 & f \\ 1 & 0 \end{pmatrix}$; this is left to you.

164