II.E. Hermitian forms and unitary groups

Assuming as usual that $\operatorname{char}(\mathbb{F}) \neq 2$, let \mathbb{E} / \mathbb{F} be a field extension of degree 2 , and $\rho \in \operatorname{Aut}\left(\mathbb{E} / \mathbb{F}\right.$) the generator (with $\rho^{2}=\mathrm{id}_{\mathbb{E}}$); we shall write $\bar{\alpha}$ for $\rho(\alpha)$. Let V be a vector space of dimension n over \mathbb{E}; considering this as a vector space of dimension $2 n$ over \mathbb{F} defines the so-called Weil-restriction $W:=\operatorname{Res}_{\mathbb{E} / \mathbb{F}} V$. Remember that we can also think of \mathbb{E} as a 2-dimensional vector space over \mathbb{F}.
II.E.1. Definition. (i) A matrix $\boldsymbol{h}=\left(h_{i j}\right)$ is Hermitian if $h_{j i}=\bar{h}_{i j}$ $(\forall i, j)$, i.e. if $\boldsymbol{h}^{*}:={ }^{t} \overline{\boldsymbol{h}}=\boldsymbol{h}$. It is skew-Hermitian if $\boldsymbol{h}^{*}=-\boldsymbol{h}$.
(ii) A Hermitian form on V is an element

$$
H \in \operatorname{Hom}_{\mathbb{F}}(W \otimes W, \mathbb{E})
$$

(or, if you prefer, a map from $V \times V \rightarrow \mathbb{E}$) satisfying
(a) $H(\alpha x+\beta y, v)=\alpha H(x, v)+\beta H(y, v)$,
(b) $H(v, \alpha x+\beta y)=\bar{\alpha} H(v, x)+\bar{\beta} H(v, y)$, and
(c) $\overline{H(u, v)}=H(v, u)$.
(Actually, (a) and (c) imply (b).) The pair (V, H) is called a Hermitian vector space.

Given a basis $e=\left\{e_{1}, \ldots, e_{n}\right\}$ of V over \mathbb{E}, and writing $[H]_{e}=: \boldsymbol{h}$, computing $H\left(\sum_{i} u_{i} e_{i}, \sum_{j} v_{j} e_{j}\right)$ immediately yields

$$
\begin{equation*}
H(u, v)={ }^{t}[u]_{e} \boldsymbol{h} \overline{[v]_{e}} . \tag{II.E.2}
\end{equation*}
$$

Clearly, (c) is equivalent to

$$
{ }^{t} \overline{[u]_{e}} \overline{\boldsymbol{h}}[v]_{e}={ }^{t}[v]_{e} \boldsymbol{h} \overline{[u]_{e}}\left(={ }^{t}\left({ }^{t}[v]_{e} \boldsymbol{h} \overline{[u]_{e}}\right)={ }^{t} \overline{[u]_{e}} \boldsymbol{t} \boldsymbol{h}[v]_{e}\right) \quad(\forall u, v \in V)
$$

and thus to h being a Hermitian matrix.
As was the case for symmetric and alternating bilinear forms, there is a particularly nice basis that puts this matrix in a "standard form":
II.E.3. Theorem. Let (V, H) be a Hermitian vector space over \mathbb{E}. Then V has a basis $\varepsilon=\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ for which $H\left(\varepsilon_{i}, \varepsilon_{j}\right)=b_{j} \delta_{i j}$, with $b_{j} \in \mathbb{F}^{*}$ for $1 \leq j \leq r$ and $b_{j}=0$ for $r<j \leq n$.

Proof. Suppose that $H(u, u)=0$ for all $u \in V$. If H is not identically zero, then there exist u, v with $H(u, v)=1$. Then $0=$ $H(u+v, u+v)=H(u, v)+H(v, u)=H(u, v)+H(u, v)=2$, а contradiction. So, assuming H is not trivial, there is an $\varepsilon_{1} \in V$ with $b_{1}:=H\left(\varepsilon_{1}, \varepsilon_{1}\right) \neq 0$. By Hermitian symmetry (property (c) in II.E.1(ii)), $b_{1}=\bar{b}_{1}$ hence $b_{1} \in \mathbb{F}^{*}$.

Inductively suppose we have $\varepsilon_{1}, \ldots, \varepsilon_{k}$ with $H\left(\varepsilon_{i}, \varepsilon_{j}\right)=b_{i} \delta_{i j}$, and let U_{k} be their span. We have $V=U_{k} \oplus U_{k}^{\perp}$ since we can write any $x \in V$ as $y+(x-y)$ where $y:=\sum_{j=1}^{k} b_{j}^{-1} H\left(x, \varepsilon_{j}\right) \varepsilon_{j}$. Apply the last paragraph to $\left.H\right|_{U_{\vec{k}}^{\perp}}$ to complete the inductive step.

Since a change of basis (with matrix S) transforms $\boldsymbol{h} \mapsto{ }^{t} S h \bar{S}$, we can evidently multiply each b_{j} by anything in $N_{\mathbb{E} / \mathbb{F}}\left(\mathbb{E}^{*}\right)$ (i.e. "absolute squares" $\alpha \bar{\alpha}$) for free. If $\mathbb{E}=\mathbb{C}$ and $\mathbb{F}=\mathbb{R}$, the same argument as in the proof of Sylvester's theorem shows, conversely, that we cannot change the number p and q of positive resp. negative b_{j} 's. So the Hermitian forms in this case are completely classified by the pair (p, q), which is again called the signature.

The associated bilinear forms.

As Definition II.E. 1 points out, while H is only \mathbb{E}-sesquilinear (this is (a) and (b)), it is \mathbb{F}-bilinear. That means its "real" and "imaginary" parts (so to speak) should yield \mathbb{F}-bilinear forms on W, giving us access to results we have already proved in this case. Indeed, writing $\mathbb{E}=\mathbb{F}(\sqrt{f})$ (as we can do when $\operatorname{char}(\mathbb{F}) \neq 2$), define $B^{\prime}, B^{\prime \prime} \in \operatorname{Hom}(W \otimes W, \mathbb{F})$ by

$$
\begin{equation*}
H(w, u)=: B^{\prime}(w, u)-\sqrt{f} B^{\prime \prime}(w, u) . \tag{II.E.4}
\end{equation*}
$$

Equivalently, we can set

$$
\left\{\begin{align*}
B^{\prime}(w, u) & :=\frac{1}{2}(H(w, u)+H(u, w)) \text { and } \tag{II.E.5}\\
B^{\prime \prime}(w, u) & :=\frac{-1}{2 \sqrt{f}}(H(w, u)-H(u, w)) .
\end{align*}\right.
$$

which makes it clear that B^{\prime} is symmetric and $B^{\prime \prime}$ alternating.

Now consider the multiplication-by- $\sqrt{f} \operatorname{map} \mu \in \operatorname{End}_{\mathbb{F}}(W)$. This has minimal polynomial $x^{2}-f$, hence "diagonalizes over \mathbb{E} with ρ conjugate eigenspaces and eigenvalues":

$$
\begin{equation*}
W \otimes_{\mathbb{F}} \mathbb{E} \cong E_{\mu}(\sqrt{f}) \oplus E_{\mu}(-\sqrt{f}) \cong V \oplus \bar{V} \tag{II.E.6}
\end{equation*}
$$

where " \bar{V} " is a copy of V on which \mathbb{E} acts through ρ. Sending $\xi \mapsto$ $(\xi, \bar{\zeta})$ (acting on RHS(II.E.6)) thus yields an embedding

$$
\operatorname{End}_{\mathbb{E}}(V) \hookrightarrow \operatorname{End}_{\mathbb{F}}(W)
$$

with image contained in $\operatorname{End}_{\mathbb{F}}(W)^{\mu}$, i.e. the endomorphisms commuting with μ. In fact, this is the image, since any \mathbb{F}-linear endomorphism commuting with μ simultaneously diagonalizes with μ hence sends (over \mathbb{E}) $V \rightarrow V$ and $\bar{V} \rightarrow \bar{V}$, and takes the form $(\xi, \bar{\xi})$.
II.E.7. Remark. As an aside here, it is useful to keep in mind that if you represent \mathbb{C} as an \mathbb{R}-vector-space with basis $\{1, \mathbf{i}\}$, then multiplication by $\alpha=a+b \mathbf{i}$ is represented by the matrix $\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$. This matrix commutes with $[\mu]=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ (multiplication by $\sqrt{f}=\mathbf{i}$) and diagonalizes over \mathbb{C} as $\operatorname{diag}(a+b \mathbf{i}, a-b \mathbf{i})$.

That is, you begin with \mathbb{C} as a 1-dimensional vector space over itself, Weil-restrict to $W:=\operatorname{Res}_{\mathbb{C} / \mathbb{R}} \mathbb{C}=\mathbb{R}\langle 1, \mathbf{i}\rangle$, then extend coefficients to \mathbb{C} via $W \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \oplus \mathbb{C}$. The two copies of \mathbb{C} are spanned by $\frac{1}{2}\binom{1}{-i}$ and $\frac{1}{2}\binom{1}{\mathbf{i}}$, and multiplication by α acts through α on the first copy and $\bar{\alpha}$ on the second.

Returning to our bilinear forms $B^{\prime}, B^{\prime \prime}$ over \mathbb{F}, for arbitrary $w, u \in$ W ($=V$ as a set) we compute

$$
\begin{aligned}
B^{\prime \prime}(w, \mu u) & =\frac{-1}{2 \sqrt{f}}(H(w, \mu u)-H(\mu u, w)) \\
& =\frac{-1}{2 \sqrt{f}}(-\sqrt{f} H(w, u)-\sqrt{f} H(u, w)) \\
& =\frac{1}{2}(H(w, u)+H(u, w))=B^{\prime}(w, u)
\end{aligned}
$$

which also implies $B^{\prime \prime}(w, u)=\frac{1}{f} B^{\prime}(w, \mu u)$. One consequence is that we can write H in terms of just B^{\prime} or $B^{\prime \prime}$:
(II.E.8)

$$
H(w, u)=B^{\prime}(w, u)-\frac{1}{\sqrt{f}} B^{\prime}(w, \mu u)=-\sqrt{f} B^{\prime \prime}(w, u)+B^{\prime \prime}(w, \mu u)
$$

Another is that, given a transformation $T \in \operatorname{End}_{\mathbb{F}}(W)^{\mu}$, we have

$$
\begin{aligned}
T \in \operatorname{Aut}\left(W, B^{\prime}\right) & \Longleftrightarrow B^{\prime}(T w, T u)=B^{\prime}(w, u) \quad(\forall w, u \in W) \\
& \Longleftrightarrow B^{\prime \prime}(T w, \mu T u)=B^{\prime \prime}(w, \mu u) \quad(\forall w, u \in W) \\
& \Longleftrightarrow B^{\prime \prime}(T w, T z)=B^{\prime \prime}(w, z) \quad(\forall w, z \in W) \\
& \Longleftrightarrow T \in \operatorname{Aut}\left(W, B^{\prime \prime}\right) .
\end{aligned}
$$

The upshot is that we needn't worry about both B^{\prime} and $B^{\prime \prime}$, so we will make a choice and drop B^{\prime}.
II.E.9. REmARK. There is a different perspective on how H and $B^{\prime \prime}$ are related. Using the identification of V with W (as sets), we map $V=W \hookrightarrow W \otimes_{\mathbb{F}} \mathbb{E} \cong E_{\mu}(\sqrt{f}) \oplus E_{\mu}(-\sqrt{f})$, denoting the image of v by $(\imath(v), \bar{\imath}(\bar{v}))$. (In the setting of II.E.7, the effect is to send $\alpha=$ $a+b \mathbf{i} \mapsto \frac{\alpha}{2}\binom{1}{-1}+\frac{\bar{\alpha}}{2}\binom{1}{\mathbf{i}}$.) This defines isomorphisms $\imath: V \rightarrow E_{\mu}(\sqrt{f})$ and $\bar{\imath}: \bar{V} \rightarrow E_{\mu}(-\sqrt{f})$, explaining the RHS of (II.E.5) a little better. That is, we can write $v=\imath(v)+\bar{\imath}(\bar{v})$ in $W \otimes_{\mathbb{F}} \mathbb{E}$.

Writing $B_{\mathbb{E}}^{\prime \prime}$ for the \mathbb{E}-linear extension of $B^{\prime \prime}$ to $W \otimes_{\mathbb{F}} \mathbb{E}$, I claim that $B_{\mathbb{E}}^{\prime \prime}\left(\imath\left(v_{1}\right), \imath\left(v_{2}\right)\right)=0=B_{\mathbb{E}}^{\prime \prime}\left(\bar{\imath}\left(\bar{v}_{1}\right), \bar{\imath}\left(\bar{v}_{2}\right)\right)$. To see this, observe that ${ }^{12}$
$B^{\prime \prime}(\mu w, \mu z)=B^{\prime}(\mu w, z)=B^{\prime}(z, \mu w)=f B^{\prime \prime}(z, w)=-f B^{\prime \prime}(w, z)$
hence [by \mathbb{E}-linear extension]

$$
\begin{aligned}
-f B^{\prime \prime}\left(\imath\left(v_{1}\right), \imath\left(v_{2}\right)\right) & =B^{\prime \prime}\left(\mu\left(\imath\left(v_{1}\right)\right), \mu\left(\imath\left(v_{2}\right)\right)\right) \\
& \left.=B^{\prime \prime}\left(\sqrt{f} \imath\left(v_{1}\right)\right), \sqrt{f} \imath\left(v_{2}\right)\right)=f B^{\prime \prime}\left(\imath\left(v_{1}\right), \imath\left(v_{2}\right)\right) .
\end{aligned}
$$

The upshot that $E_{\mu}(\sqrt{f})$ and $E_{\mu}(-\sqrt{f})$ are isotropic for $B_{\mathbb{E}}^{\prime \prime}$, which only pairs them with each other.

[^0]Using this, (II.E.8), and anti-symmetry of $B_{\mathbb{E}}^{\prime \prime}$, we calculate

$$
\begin{aligned}
H\left(v_{1}, v_{2}\right)= & H\left(\imath\left(v_{1}\right)+\bar{\imath}\left(\bar{v}_{1}\right), \imath\left(v_{2}\right)+\bar{\imath}\left(\bar{v}_{2}\right)\right) \\
= & -\sqrt{f} B_{\mathbb{E}}^{\prime \prime}\left(\imath\left(v_{1}\right)+\bar{\imath}\left(\bar{v}_{1}\right), \imath\left(v_{2}\right)+\bar{\imath}\left(\bar{v}_{2}\right)\right) \\
& +B_{\mathbb{E}}^{\prime \prime}\left(\imath\left(v_{1}\right)+\bar{\imath}\left(\bar{v}_{1}\right), \sqrt{f} \imath\left(v_{2}\right)-\sqrt{f} \bar{\imath}\left(\bar{v}_{2}\right)\right) \\
= & -2 \sqrt{f} B_{\mathbb{E}}^{\prime \prime}\left(\imath\left(v_{1}\right), \bar{\imath}\left(\bar{v}_{2}\right)\right) .
\end{aligned}
$$

That is, we can view the Hermitian form on v_{1}, v_{2} in terms of the ($\mathbb{E}-$ linearly extended) symplectic form applied to $v_{1} \in V$ and $v_{2} \in \bar{V}$ in RHS(II.E.6).

Unitary groups.

Henceforth we assume that our Hermitian form H is nondegenerate, which makes $B^{\prime \prime}$ (and B^{\prime}) nondegenerate by (II.E.8). However, I will write $\operatorname{Sp}\left(W, B^{\prime \prime}\right)$ rather than $\mathrm{Sp}_{2 n}(\mathbb{F})$ for its isometries, since we have to worry about how this particular copy of the symplectic group is situated relative to the action of μ.
II.E.10. Definition. (i) The isometry group

$$
U(V, H):=\left\{T \in \operatorname{Aut}_{\mathbb{E}}(V) \mid H(T u, T v)=H(u, v)(\forall u, v \in V)\right\}
$$

is called a unitary group.
(ii) When \mathbb{E} / \mathbb{F} is \mathbb{C} / \mathbb{R}, the isomorphism class of this group is determined by the signature (p, q) of H, and we write $U(V, H) \cong$ $U(p, q)$.

Recall from §II.B that the sesquilinearity of H means that $U(V, H)$ is not a linear algebraic group over \mathbb{E}, but only over \mathbb{F}. As a final result, we can use our work above to see this more explicitly.
II.E.11. Proposition. We have

$$
U(V, H) \cong \operatorname{Sp}\left(W, B^{\prime \prime}\right) \cap \operatorname{Res}_{\mathbb{E} / \mathbb{F}}(\operatorname{Aut}(V))=\operatorname{Sp}\left(W, B^{\prime \prime}\right)^{\mu}
$$

Proof. We prove that the end terms are isomorphic. See the remark below for the middle term.

Given $T \in U(V, H), T$ is \mathbb{E}-linear so commutes with multiplication by \sqrt{f} (i.e. μ). Moreover, $H(T u, T v)=H(u, v)$ becomes by
(II.E.5) $B^{\prime \prime}(T u, T v)=B^{\prime \prime}(u, v)$ (where we can of course interpret T as an \mathbb{F}-linear automorphism of $W)$. Hence $T \in \operatorname{Sp}\left(W, B^{\prime \prime}\right)$.

Conversely, if $T \in \operatorname{Sp}\left(W, B^{\prime \prime}\right)(\Longrightarrow T$ is \mathbb{F}-linear) and commutes with μ, then it is \mathbb{E}-linear, so belongs to $\operatorname{Aut}_{\mathbb{E}}(V)$. Then one applies (II.E.8) to get from $B^{\prime \prime}(T u, T v)=B^{\prime \prime}(u, v)$ (and $T \mu=\mu T$) to $H(T u, T v)=H(u, v)$.
II.E.12. Remark. To understand the middle term in II.E.11, the main point is that the Weil restriction $\operatorname{Res}_{\mathbb{E} / \mathbb{F}}\left(\operatorname{Aut}_{\mathbb{E}}(V)\right)$ is precisely $\operatorname{Aut}_{\mathbb{F}}(W)^{\mu}$, i.e. automorphisms of W commuting with μ. As with vector spaces, the meaning of $\operatorname{Res}_{\mathbb{E} / \mathbb{F}}$ is to realize a linear algebraic group over \mathbb{E} as one over \mathbb{F}. The proof of this is little more than " \mathbb{F}-linear plus commutes with μ " $=$ " \mathbb{E}-linear".

But it is useful to think about what this means explicitly: given a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of $V / \mathbb{E},\left\{e_{1}, \sqrt{f} e_{1}, \ldots, e_{n}, \sqrt{f} e_{n}\right\}$ gives a corresponding basis of W / \mathbb{F}. On the level of matrices with respect to these bases, $\operatorname{Res}_{\mathbb{E} / \mathbb{F}}$ replaces each entry $\alpha=a+b \sqrt{f}$ of an $n \times n$ matrix over \mathbb{E} by the 2×2 block $\left(\begin{array}{c}a f b \\ b \\ b\end{array}\right)$, thus producing a $2 n \times 2 n$ matrix over \mathbb{F}. One easily checks that such matrices are exactly the μ-invariant ones, where μ is the block-diagonal matrix $\left(\begin{array}{ll}0 & f \\ 1 & 0\end{array}\right)$; this is left to you.

[^0]: ${ }^{12}$ Alternatively here, you could just take the "imaginary" part of $H\left(\mu v_{1}, \mu v_{2}\right)=$ $H\left(\sqrt{f} v_{1}, \sqrt{f} v_{2}\right)=-f H\left(v_{1}, v_{2}\right)$ in (II.E.4).

