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II1.B. The Artin-Wedderburn theorem

We now turn to the classification of semisimple rings. The main
result will say that all semisimple rings are products of matrix alge-
bras over division rings (like fields, quaternions, etc.). We will need
several results on endomorphism rings of R-modules before we can
get started with the proof.

III.B.1. PROPOSITION. (i) R°P = Endg(gR) and R = Endg(RR).
(i) For any R-module M, M, (Endg(M)) = Endg(M®").

PROOF. (i) This is the m = 1 case of [Algebra I, IV.B.21], but we
can easily recap the proof: define maps

¢: R — Endr(Rr) and t: R’ — Endg(gR)

(sending r + ¢, resp. t,) by {,(a) := ra and v,(a) := ar. One easily

checks these are isomorphisms. We do it for t:

o [homomorphism] t,.op5(a) = ts(a) = asr = v, (as) = v.(vs(a))
shows that 7 -°P s — t,ts.

e [injectivity]t, =0 = 0=1,(1) =1r=r.

e [surjectivity] ¢ € Endr(rR) = ty1)(a) = ap(l) = ¢(al) =
p(a) = o) = @

(ii) This works for both left- and right-R-modules; we will focus on

the left ones. Writing 7,: M < M®" for the inclusion of the k™ di-

!
rect summand, denote elements of M®" by p = };1;(;) = ( : > .

Un
Define a map

6: M,(Endg(M)) — Endg(M®")

SZ(Si]') — 0O

1 yje1j(p)
by 0:(1) = ¥;1(eij(p;)). Thatis, 0 ( : ) = : looks

Hn Y Sn‘j(Vj)
exactly like matrix-vector multiplication, so is automatically a ring
homomorphism provided 6, € Endg(M®"). The latter is immediate

since each of the 1; and ¢;; are left-R-module homomorphisms.
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For injectivity, 0 = 0, = 0 = 0(1x(m)) = ¥ j1i(e;j(mdy)) =
Yiti(eix(m)) for each k and every m € M = ey (m) = 0 (Vi k,m)
- €ij = 0 (VZ,]) — ¢=0.

For surjectivity, suppose ® € Endg(M®"). Writing p;: M®" —
M for the projection onto the i" summand, define ¢;; € Endg(M)
by &;(m) = pi(©(1j(m))). Then O:(u) = ¥;;1:(0i(O(;(1)))) =
Y ©(1(4j)) = O(u) for any p € M®" hence 6, = ©. O

Next, we need a more detailed version of Schur’s Lemma from
[Algebra I, IV.B.30-31]. This requires a “prelemma” of sorts which is

important in its own right:

II1.B.2. LEMMA. Let D be a division ring. Up to isomorphism, M, (D)
has one (left) simple module V, namely the one given by its action by left
multiplication on “column vectors” in D",

PROOF. First, it is clear that “D®"” is a simple module, since
M, (D) acts transitively on its nonzero elements. Moreover, if we
consider M, (D) as a (left) module over itself, it decomposes into a
direct sum of n copies of this module, each given by matrices with
nonzero entries in only one column. If we call these “column vector
submodules” {C;}" ,, then

{0}CC1CC1@C2C"'CC1@"'EBCHZM MH(D)

n(D)
gives a composition series, each of whose simple graded pieces is
our “D%"”.

Now let V be any simple M,,(D)-module. Then V = M, (D)v is
cyclic. The map 6: M,(D) — M;(D)v has a maximal (left) ideal
as its kernel. (If it wasn’t maximal, then by 1st isomorphism for
modules, V = M, (D)/ ker(6) wouldn’t be simple.) By the same
argument as in the proof of Jordan-Holder, we know that ker(6) has
a composition series. (Or use your HW exercise: a submodule of
a Noetherian and Artinian module retains those properties.) This
makes ker(6) the first submodule in a CS for ,, , M,(D) itself. By
Jordan-Holder itself, together with the last paragraph, we conclude
that V is isomorphic to our “D®"” module. 0
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[II.B.3. SCHUR’S LEMMA. Let V 22 W be simple R-modules.

(i) Homg (V, W) = {0}.

(il) Homg(V, V) (Endg(V)) is a division ring.

(iii) If R = My (D), where D is a division ring, then Endg (V) = D.
In particular, if R is a division ring, then Endg(V) = R.

PROOF. We recap the previous proof. Given any R-module ho-
momorphism 0: V. — V’/, ker(6) is a submodule of V. Since V is
simple, this is V or zero; so 6 is zero or injective. If V' is also simple
then 6(V) must be zero or all of V'. Hence 0 is zero or an isomor-
phism, which gives (i) if V' = W. It gives (ii) if V' = V, because then
every nonzero 0 € Endg(V) has an inverse.

Turning to (iii), we have V' = D®" from IIL.B.2. Define a map
t: D’ — Endgr(V) by d — 14, ie. right scalar-multiplication on
“vectors” in D®". We have t; € Endg(V) since t;(rv) = rvd =
rty(v), the point being that “right and left actions don’t interfere with
each other”. Clearly t is an injective ring homomorphism.

Now given any ¢ € Endgr(V), we need to show that ¢ = v, for
some d € D. Let e; and ‘e; denote the standard basis column and
row vectors; thinking of e; € D" = V, we write ¢(e;) =: )}, ¢;e;
(with ¢; € D). Note that the column-row product [v’e;] is a matrix
in M,,(D) = R, and the row-column product ‘e;e; = 1. So we have

e(v) =e(v'erer) = e([ver].er) = [vle].e(eq)
= [vlei]. Y eiei =v) ei'ere; = v}, €6y

= VE] = T, 0.
Since this computation is independent of v € V, it gives e = v,,. [

Note that in the proof, v identifies V as a free right D-module (cf.
[Algebra I, IV.A.11]). Of course, it is also a free left D-module via
left-multiplication; this just doesn’t commute with the left R-module
structure. We also remark (for use below) that taking the transpose
of matrices induces an isomorphism M,,(D°P) = M, (D)°P.

Now for the main result: you may be surprised by how short the
proof is.
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II1.B.4. THEOREM (Wedderburn, 1907; Artin, 1927).
(a) Any semisimple ring R can be expressed uniquely as a product of
matrix rings over division rings,

(IIL.B.5) R 2 My, (Dy) X -+ X My, (D).

Conversely, all such products are semisimple.

(b) There are exactly r non-isomorphic (left) simple modules V; over R,
namely the “column modules” of each matrix ring above. For i # j, even
if n; = njand D; = Dj, we have V; 2 V;, for it is different factors in the
product (II1.B.5) that operate nontrivially on them.

(c) As a left module over itself, we have RR = levi@"", where n; =
dimp, (V;) (in the sense that V; = Di@”i as D;-module).

PROOF. We are assuming that R is (left) semisimple. This means
that all its (left) modules decompose into irreducibles; in particular,
we can write

~J EB i
(IIL.B.6) RR = @_ v,

with V; pairwise nonisomorphic simple left R-modules. This sum is
finite by III.A.9. (We are not yet assuming that the V; are the modules
described in (b).)

I claim that RHS(III.B.6) contains every simple left R-module. In-
deed, if V is any such, we can argue as in the proof of IIL.B.2 that it
is the top graded piece of a composition series for gR. But (IIL.B.6)
also provides an obvious CS for g R, with the V; as graded pieces. By
Jordan-Holder, V' is isomorphic to one of the V.

Now set D; := (EndgV;)°P (division rings by II.B.3(ii)), and com-
pute

R°P = Endg(gR) = Endg(®l_,V™)
IILB.1(i) (LILB.6)

~  x’ Endg(V") =~ x!_ .M, (Endg(V;
LB ndr(V; )III.B.l(ii) i=1Mn; (Endg (Vi)

= erle”i(D?p)'
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By previous remarks, applying “op” to both sides gives us that R =
X!"_ My, (D®)°P =2 xI_ M,,(D;). The My,(D;)-modules provided
by IIL.B.2 become, by composing with the projections R — My, (D;),
r pairwise nonisomorphic R-modules. These must be the V;, proving
(b) and (c).

The converse statement in (a) follows, via III.A.7, from the de-
compostion of the matrix ring product into column-vector modules.

/

For the uniqueness statement, observe that if M = x]leMn((D]{)
]

is another product decomposition, then the corresponding module
decomposition gRR = EB;/:le’ onj (into column modules) has D]’- =
Endg(V/)°P by IILB.3(iii). Since these are composition factors, we
must haver =1/, n; = n; and V; = V/ (up to permutation) by Jordan-

Holder, and thus D; = D! as well. O

Of course all of this works for “right semisimple” rings, with
slight modifications to the proofs. So, as a byproduct of II1.B.4, we
see that left and right semisimple are the same. We also get a classi-
fication of (left or right) simple rings:

III.B.7. COROLLARY. Any simple ring R can be expressed uniquely
as a matrix ring over a division ring, R = M, (D). Conversely, all such
matrix rings are simple.

PROOF. If R is simple, it is semisimple, hence = M,, (D) x - - - X
M, (D;) by II.LB.4. Clearly we must also have r = 1 since other-
wise the individual factors 0 x - - - X My, (D;) x - - - x 0 are nontrivial,
proper, two-sided ideals in R.

On the other hand, any M, (D) is simple, since the approach in-
dicated for M, (C) in III.A.6 shows that any nonzero two-sided ideal
is the whole ring. O



