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III.B. The Artin-Wedderburn theorem

We now turn to the classification of semisimple rings. The main
result will say that all semisimple rings are products of matrix alge-
bras over division rings (like fields, quaternions, etc.). We will need
several results on endomorphism rings of R-modules before we can
get started with the proof.

III.B.1. PROPOSITION. (i) Rop ∼= EndR(RR) and R ∼= EndR(RR).
(ii) For any R-module M, Mn(EndR(M)) ∼= EndR(M⊕n).

PROOF. (i) This is the m = 1 case of [Algebra I, IV.B.21], but we
can easily recap the proof: define maps

` : R→ EndR(RR) and r : Rop → EndR(RR)

(sending r 7→ `r resp. rr) by `r(a) := ra and rr(a) := ar. One easily
checks these are isomorphisms. We do it for r:

• [homomorphism] rr·ops(a) = rsr(a) = asr = rr(as) = rr(rs(a))
shows that r ·op s 7→ rrrs.
• [injectivity] rr = 0 =⇒ 0 = rr(1) = 1r = r.
• [surjectivity] ϕ ∈ EndR(RR) =⇒ rϕ(1)(a) = aϕ(1) = ϕ(a1) =

ϕ(a) =⇒ rϕ(1) = ϕ.

(ii) This works for both left- and right-R-modules; we will focus on
the left ones. Writing ık : M ↪→ M⊕n for the inclusion of the kth di-

rect summand, denote elements of M⊕n by µ = ∑j ıj(µj) =

(
µ1
...

µn

)
.

Define a map

θ : Mn(EndR(M))→ EndR(M⊕n)

ε = (εij) 7→ θε

by θε(µ) := ∑i,j ıi(εij(µj)). That is, θε

(
µ1
...

µn

)
=

 ∑j ε1j(µj)

...
∑j εnj(µj)

 looks

exactly like matrix-vector multiplication, so is automatically a ring
homomorphism provided θε ∈ EndR(M⊕n). The latter is immediate
since each of the ıi and εij are left-R-module homomorphisms.
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For injectivity, 0 = θε =⇒ 0 = θε(ık(m)) = ∑i,j ıi(εij(mδjk)) =

∑i ıi(εik(m)) for each k and every m ∈ M =⇒ εik(m) = 0 (∀i, k, m)

=⇒ εij = 0 (∀i, j) =⇒ ε = 0.
For surjectivity, suppose Θ ∈ EndR(M⊕n). Writing ρi : M⊕n �

M for the projection onto the ith summand, define εij ∈ EndR(M)

by εij(m) := ρi(Θ(ıj(m))). Then θε(µ) = ∑i,j ıi(ρi(Θ(ıj(µj)))) =

∑j Θ(ıj(µj)) = Θ(µ) for any µ ∈ M⊕n hence θε = Θ. �

Next, we need a more detailed version of Schur’s Lemma from
[Algebra I, IV.B.30-31]. This requires a “prelemma” of sorts which is
important in its own right:

III.B.2. LEMMA. Let D be a division ring. Up to isomorphism, Mn(D)

has one (left) simple module V, namely the one given by its action by left
multiplication on “column vectors” in D⊕n.

PROOF. First, it is clear that “D⊕n” is a simple module, since
Mn(D) acts transitively on its nonzero elements. Moreover, if we
consider Mn(D) as a (left) module over itself, it decomposes into a
direct sum of n copies of this module, each given by matrices with
nonzero entries in only one column. If we call these “column vector
submodules” {Ci}n

i=1, then

{0} ⊂ C1 ⊂ C1 ⊕ C2 ⊂ · · · ⊂ C1 ⊕ · · · ⊕ Cn = Mn(D)
Mn(D)

gives a composition series, each of whose simple graded pieces is
our “D⊕n”.

Now let V be any simple Mn(D)-module. Then V = Mn(D)v is
cyclic. The map θ : Mn(D) � Mn(D)v has a maximal (left) ideal
as its kernel. (If it wasn’t maximal, then by 1st isomorphism for
modules, V ∼= Mn(D)/ ker(θ) wouldn’t be simple.) By the same
argument as in the proof of Jordan-Hölder, we know that ker(θ) has
a composition series. (Or use your HW exercise: a submodule of
a Noetherian and Artinian module retains those properties.) This
makes ker(θ) the first submodule in a CS for Mn(D)

Mn(D) itself. By
Jordan-Hölder itself, together with the last paragraph, we conclude
that V is isomorphic to our “D⊕n” module. �
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III.B.3. SCHUR’S LEMMA. Let V � W be simple R-modules.
(i) HomR(V, W) = {0}.
(ii) HomR(V, V) (EndR(V)) is a division ring.
(iii) If R ∼= Mn(D), where D is a division ring, then EndR(V) ∼= Dop.

In particular, if R is a division ring, then EndR(V) ∼= Rop.

PROOF. We recap the previous proof. Given any R-module ho-
momorphism θ : V → V′, ker(θ) is a submodule of V. Since V is
simple, this is V or zero; so θ is zero or injective. If V′ is also simple
then θ(V) must be zero or all of V′. Hence θ is zero or an isomor-
phism, which gives (i) if V′ = W. It gives (ii) if V′ = V, because then
every nonzero θ ∈ EndR(V) has an inverse.

Turning to (iii), we have V ∼= D⊕n from III.B.2. Define a map
r : Dop → EndR(V) by d 7→ rd, i.e. right scalar-multiplication on
“vectors” in D⊕n. We have rd ∈ EndR(V) since rd(rv) = rvd =

rrd(v), the point being that “right and left actions don’t interfere with
each other”. Clearly r is an injective ring homomorphism.

Now given any ε ∈ EndR(V), we need to show that ε = rd for
some d ∈ D. Let ei and tei denote the standard basis column and
row vectors; thinking of ei ∈ D⊕n = V, we write ε(e1) =: ∑i εiei

(with εi ∈ D). Note that the column-row product [v te1] is a matrix
in Mn(D) = R, and the row-column product te1e1 = 1. So we have

ε(v) = ε(v te1e1) = ε([v te1].e1) = [v te1].ε(e1)

= [v te1]. ∑i εiei = v ∑i εi
te1ei = v ∑i εiδ1i

= vε1 = rε1v.

Since this computation is independent of v ∈ V, it gives ε = rε1 . �

Note that in the proof, r identifies V as a free right D-module (cf.
[Algebra I, IV.A.11]). Of course, it is also a free left D-module via
left-multiplication; this just doesn’t commute with the left R-module
structure. We also remark (for use below) that taking the transpose
of matrices induces an isomorphism Mn(Dop) ∼= Mn(D)op.

Now for the main result: you may be surprised by how short the
proof is.
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III.B.4. THEOREM (Wedderburn, 1907; Artin, 1927).
(a) Any semisimple ring R can be expressed uniquely as a product of

matrix rings over division rings,

(III.B.5) R ∼= Mn1(D1)× · · · ×Mnr(Dr).

Conversely, all such products are semisimple.
(b) There are exactly r non-isomorphic (left) simple modules Vi over R,

namely the “column modules” of each matrix ring above. For i 6= j, even
if ni = nj and Di

∼= Dj, we have Vi � Vj, for it is different factors in the
product (III.B.5) that operate nontrivially on them.

(c) As a left module over itself, we have RR ∼= ⊕r
i=1V⊕ni

i , where ni =

dimDi(Vi) (in the sense that Vi = D⊕ni
i as Di-module).

PROOF. We are assuming that R is (left) semisimple. This means
that all its (left) modules decompose into irreducibles; in particular,
we can write

(III.B.6) RR ∼= ⊕r
i=1V⊕ni

i ,

with Vi pairwise nonisomorphic simple left R-modules. This sum is
finite by III.A.9. (We are not yet assuming that the Vi are the modules
described in (b).)

I claim that RHS(III.B.6) contains every simple left R-module. In-
deed, if V is any such, we can argue as in the proof of III.B.2 that it
is the top graded piece of a composition series for RR. But (III.B.6)
also provides an obvious CS for RR, with the Vi as graded pieces. By
Jordan-Hölder, V is isomorphic to one of the Vi.

Now set Di := (EndRVi)
op (division rings by III.B.3(ii)), and com-

pute

Rop ∼=
III.B.1(i)

EndR(RR) ∼=
(III.B.6)

EndR(⊕r
i=1V⊕ni

i )

∼=
III.B.3(i)

×r
i=1EndR(V

⊕ni
i ) ∼=

III.B.1(ii)
×r

i=1Mni(EndR(Vi))

∼= ×r
i=1Mni(Dop

i ).
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By previous remarks, applying “op” to both sides gives us that R ∼=
×r

i=1Mni(Dop
i )op ∼= ×r

i=1Mn1(Di). The Mni(Di)-modules provided
by III.B.2 become, by composing with the projections R � Mni(Di),
r pairwise nonisomorphic R-modules. These must be the Vi, proving
(b) and (c).

The converse statement in (a) follows, via III.A.7, from the de-
compostion of the matrix ring product into column-vector modules.
For the uniqueness statement, observe that if M ∼= ×r′

j=1Mn′j
(D′j)

is another product decomposition, then the corresponding module
decomposition RR ∼= ⊕r′

j=1V′j
⊕n′j (into column modules) has D′j

∼=
EndR(V′j )

op by III.B.3(iii). Since these are composition factors, we
must have r = r′, ni = n′i and Vi

∼= V′i (up to permutation) by Jordan-
Hölder, and thus Di

∼= D′i as well. �

Of course all of this works for “right semisimple” rings, with
slight modifications to the proofs. So, as a byproduct of III.B.4, we
see that left and right semisimple are the same. We also get a classi-
fication of (left or right) simple rings:

III.B.7. COROLLARY. Any simple ring R can be expressed uniquely
as a matrix ring over a division ring, R ∼= Mn(D). Conversely, all such
matrix rings are simple.

PROOF. If R is simple, it is semisimple, hence ∼= Mn1(D)× · · · ×
Mnr(Dr) by III.B.4. Clearly we must also have r = 1 since other-
wise the individual factors 0× · · · ×Mni(Di)× · · · × 0 are nontrivial,
proper, two-sided ideals in R.

On the other hand, any Mn(D) is simple, since the approach in-
dicated for Mn(C) in III.A.6 shows that any nonzero two-sided ideal
is the whole ring. �


