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III.C. Semisimple algebras

In this section we will discuss two principal examples of semisim-
ple rings, which both come from the world of (associative, finite-
dimensional) algebras over a field F: group rings and central simple
algebras. The main things to remember here from [Algebra I, §V.A]
are that:

• an F-algebra is a ring A together with an embedding of F in its
center C(A);
• this makes A into an F-vector space, so we can speak of dimF(A);
• algebra ideals (left, right, or 2-sided) are the same as ring ideals

since multiplication by F is already included in multiplication by
A; and
• algebra homomorphisms are more specific than ring homomor-

phisms (unless F is just the prime field), since they intertwine the
embedding of (equiv. scalar multiplication by) F.

An algebra is semisimple if the underlying ring is.

III.C.1. DEFINITION. Let G be a finite group, and R a ring. The
group ring of G over R is

R[G] := {∑finite ri[gi] | ri ∈ R, gi ∈ G},

with products defined by r[g] · r′[g′] := rr′[gg′]. The group algebra
of G over a field F is simply the special case where R = F, regarded
as an F-algebra.

III.C.2. MASCHKE’S THEOREM. Let R be a ring, and G a finite group.
Then R[G] is semisimple ⇐⇒ R is semisimple and |G| is invertible in R.

PROOF. ( =⇒ ): Given a ring homomorphism θ : S → R, if S
is semisimple then so is θ(S). (Simply regard θ(S) ∼= S/ ker(θ) as
a quotient module of SS , and invoke III.A.3 and III.A.7.) Applying
this to the augmentation homomorphism

ε : R[G]� R

∑ ri[gi] 7→ ∑ ri,
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we get semisimplicity of R from that of R[G].
Now suppose p

∣∣|G|, and write S := R[G]. I claim that p ∈ R∗

(which will finish this direction). By Cauchy’s theorem, there exists
g ∈ G of order p; write H := 〈g〉 and s := [1]− [g] ∈ S.

Consider the principal left ideal (s) := Ss; by semisimplicity of

SS, there is another left ideal I ⊂ S with SS = (s) ⊕ I. Hence we
may write 1 = e + ı with e ∈ (s) and ı ∈ I, so that for any t ∈ (s)
we have t = te + tı =⇒ tı = t− te ∈ (s) ∩ I = {0} =⇒ t = te.
Taking t := e, this gives e = e2 (e is idempotent); taking t := s, we
get (s) = (se) ⊂ (e) ⊂ (s) =⇒ (s) = (e).

So we have e = xs and s = ye = ye2 = ye · e = s · xs = sxs hence

(1− sx)s = 0.

Writing σ := 1− sx = ∑ rγ[γ], this equation says σ · ([1]− [g]) = 0,
i.e. σ · [g] = σ. So the coefficients rγ are constant on left cosets of H,
and σ = ∑γH∈G/H rγ[γ]∑

p−1
j=0 [g

j] =: σ0 ∑
p−1
j=0 [g

j]. The augmentation
gives

ε(σ0)p = ε(σ) = ε(1− ([1]− [g])x) = 1− 0σ(x) = 1

in R, which makes p a unit as claimed.

(⇐= ): Let V be an S (:= R[G])-module, with submodule W. This
is trivially also an R-submodule since R ⊂ S is a subring. Since R is
semisimple, we have RV = W ⊕W ′ and a corresponding projection
fW ∈ HomR(V, W), with fW |W = idW . Namely, take fW to send
v = w + w′ 7→ w. But W ′ [resp. fW] may not be an S-submodule
[resp. S-module homomorphism]. How to fix this?

Well, we define a new map ϕW : V →W by “averaging” over G:

(III.C.3) ϕW(v) :=
1
|G| ∑

g∈G
[g−1]. fW([g].v).

(This is of course where we use |G| ∈ R∗.) Clearly the RHS belongs
to W, and

ϕW(w) = 1
|G| ∑g∈G[g−1]. fW([g].w) = 1

|G| ∑g∈G[g−1].[g].w = w
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shows that ϕW |W = idW and ϕW is surjective. Reindexing by η = gγ

(g−1 = γη−1) to write

ϕW([γ].v) = 1
|G| ∑g∈G[g−1]. fW([gγ].v) = 1

|G| ∑η∈G[γη−1]. fW([η].v)

= [γ].ϕW(v),

we see that ϕW is also an S-module homomorphism.
So ker(ϕW) is a left S-submodule of V. If v ∈ W ∩ ker(ϕW), then

v = ϕW(v) = 0; so W ∩ ker(ϕW) = {0}. By writing v = ϕW(v) +
(v − ϕW(v)), we see that W + ker(ϕW) = V. Conclude that V =

W ⊕ ker(ϕW). Since W ⊂ V was arbitrary, S is semisimple. �

So if R is semisimple and |G| ∈ R∗, Artin-Wedderburn (Theorem
III.B.4) now produces a decomposition

(III.C.4) R[G]R[G] = ⊕r
i=1V⊕ni

i

in which the {Vi} constitute all of the simple left R[G]-modules. More-
over, setting Di := EndR[G](Vi)

op, we have Vi
∼= D⊕ni

i (as Di-modules).
Passing to the case where R = F is a field, (III.C.4) becomes the regu-
lar representation of G on the |G|-dimensional F-vector space F[G]

and we have the

III.C.5. COROLLARY. For a finite group G and field F with char(F) -
|G|, the regular representation of G over F decomposes as in (III.C.4),
where the {Vi} are all of the irreducible representations of G over F. Their
multiplicities ni match their ranks over the F-division algebras Di. In par-
ticular, if F is algebraically closed, then all Di = F and ni = dimF Vi.

PROOF. Everything follows from the discussion except the last
statement, which holds because algebraically closed fields have no
nontrivial finite-dimensional division algebras over them (which was
proved in [Algebra I, V.B.5]). �

Central simple algebras.

Wedderburn’s original proof of Theorem III.B.4 was for simple
algebras. This case is still quite important and relevant, particularly
the special case in the next
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III.C.6. DEFINITION. A central simple algebra (CSA) over a field
F is a simple F-algebra, in the sense of having no nontrivial 2-sided
proper ideals, with dimF(A) < ∞ and center C(A) = F.

Note that I have not included semisimplicity in the definition
here, because we are going to prove it:

III.C.7. THEOREM. (i) Let A be a simple algebra of finite dimension
over F; then A is semisimple, and A ∼= Mn(D) for a division algebra D
over F.

(ii) If A is a CSA/F, then A ∼= Mn(D) with C(D) = F. Conversely,
any Mn(D) of this form is a CSA.

PROOF. (i) The strategy of proof is going to be to directly show
A ∼= Mn(D), rather than using Artin-Wedderburn. By the finite-
dimensionality, there exists a minimal left ideal I ⊂ A. This is simple
as an A-module, and so Dop := EndA(A I) must be a division ring by
Schur. Since EndA(A I) ⊂ End(I) (:= EndZ(I)), the resulting ring
homomorphism Dop → End(I) defines a right D-module structure
on I, cf. [Algebra I, IV.A.11].

Now D is simple as a D-module, so by III.A.7 is semisimple as
a ring. Moreover, the simple D-modules are just copies of D itself,
by the usual argument with Jordan-Hölder. By semisimplicity of D,
ID is a semisimple (right) D-module, with ID = D⊕n. I claim that
A ∼= EndD(ID). By III.B.1, EndD(ID) ∼= Mn(D), and so this will
finish the proof.

To prove the claim, consider the left-multiplication homomor-
phism ` : A → EndD(ID) =: E sending a 7→ `a. (We also write `A,
`I for images of A, I.) Since A is simple, and the kernel is a 2-sided
ideal, ` must be injective. It remains to check surjectivity.

Let ı,  ∈ I and ϕ ∈ E. First note that r (right mult. by ) belongs
to EndA(A I) = Dop. It follows that ϕ(`ı()) = ϕ(ı) = ϕ(ı) =

`ϕ(ı)() =⇒ ϕ ◦ `ı = `ϕ(ı) in E, whence E ◦ `I ⊂ `I . By simplicity
of A, we must have A = AIA = IA =⇒ `A = `I ◦ `A =⇒
E ◦ `A = E ◦ `I ◦ `A ⊂ `I ◦ `A = `A =⇒ `A is a left ideal in E. But
`A contains the identity. So `A = E and we are done.
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(ii) Immediate from (i), III.B.7 and [Algebra I, III.A.11]. �

III.C.8. COROLLARY. If F is algebraically closed or finite, then the only
CSAs over F are the matrix algebras Mn(F). If F = R, then we can have
Mn(R) or Mn(H).

PROOF. This follows at once from III.C.7 and the theorems of
Frobenius and Wedderburn [Algebra I, V.B.5,8,11]. �

III.C.9. COROLLARY. For A any CSA over F, dimF A is a square.

SKETCH. Consider the “extension of scalars” Ā := A⊗F F̄, where
F̄ is an algebraic closure. One checks that C(Ā) = F̄ and dimF̄ Ā =

dimF A =: d. But by III.C.8, Ā = Mn(F̄) for some n, and so we have
d = n2. �

The obvious example here is A = H as a CSA/R, whose com-
plexification Ā := A⊗R C is M2(C), both of dimension 4.

III.C.10. EXAMPLE. We haven’t said much about F = Q. A rich
source of examples of simple and semisimple Q-algebras, and even
of division algebras, comes from bilinear forms. Suppose (W, B) is
a symplectic or orthogonal space, and G ≤ Aut(W, B) a subgroup
which acts irreducibly on W. Put D := EndG(W) = endomorphisms
commuting with G; by a version of Schur’s lemma, this is a division
algebra (over Q). Its center K := C(D) is clearly a number field of
some sort.

But not any sort. There is a constraint: since B is nondegenerate,
we can define adjoints of endomorphisms by

B(ξ†w1, w2) = B(w1, ξw2) (∀w1, w2 ∈W),

producing an involution † : D → Dop. Its restriction to K defines
an automorphism ρ ∈ Aut(K/Q) of order 1 or 2. Let K0 denote the
fixed field. If we assume furthermore that our involution is positive,
which is to say that TrK0/Q

(ρ(k)k) > 0 for all k ∈ K∗, then you can
show that:

(1) if ρ = idK, then K = K0 is a totally real field; and
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(2) if ρ 6= idK, then [K:K0] = 2, K0 is totally real, and K is totally
imaginary. (In this case, K is called a CM field.)1

One then arrives at the following classification of the possible D’s,
due to Albert. In case (1), either D is the totally real field K or a
quaternion algebra over it (which either splits or doesn’t split under
every real embedding). In case (2), all one can say is that dimK(D) is
a square (by III.C.9).

More generally, of course, we could choose G to be an arbitrary
reductive2 linear algebraic subgroup of Aut(W, B), in which case W
breaks into irreducible representations of G, viz. W ∼= ⊕jW

⊕nj
j .

Clearly then we will have EndG(W) ∼= ×jMnj(Dj), with the previous
constraints on the division algebras Dj.

1The terminology “totally real” and “totally imaginary” refer to having only real
embeddings resp. no real embeddings; “CM” stands for “complex multiplication”,
due to the role played by these fields in the study of abelian varieties. Deducing
(1) and (2) is a nice exercise using the fact that the cartesian product of real em-
beddings and real and imaginary parts of the complex embeddings embed K as a
dense subset of R[K:Q].
2These are precisely the linear algebraic groups whose representations decompose
into direct sums of irreducibles. They include all the classical groups.


