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III.D. Characters of representations

Let G be a finite group, and

(III.D.1) C[G]C[G] = ⊕r
λ=1V⊕nλ

λ , nλ = dimC(Vλ)

the decomposition of the regular representation of G into irreducible
representations over C (a.k.a. simple left C[G]-modules) guaranteed
by III.C.5. That is, we now think of the Vλ’s as C-vector spaces on
which G acts through homomorphisms

(III.D.2) πλ : G → AutC(Vλ),

in such a way that the image stabilizes no proper nonzero subspace
of Vλ. It is remarkable that all of the possible such “irreps” are al-
ready present inside C[G].

Bases for the regular representation.

Let Vreg denote C[G] considered as a vector space, and write g.v :=
πreg(g)v for the action of g. There is an obvious standard basis
given by the {[g]}g∈G, which we shall now write {g}g∈G. We shall
also use {g∗ := 1

|G|g
−1}g∈G, which has the property (in C[G]) that

∑g∈G gg∗ = 1.
Next, choose bases {eλ

j }
nλ
j=1 for each Vλ. By Artin-Wedderburn

and writing endomorphisms of Vλ with respect to these bases, we
have ring isomorphisms

(III.D.3) C[G] ∼= ×r
λ=1EndC(Vλ) ∼= ×r

λ=1Mnλ
(C).

To make this more explicit, write (Mλ
ij(g)) ∈ Mnλ

(C) for the matrices
of the action of g:

(III.D.4) g.eλ
j =:

nλ

∑
i=1

Mλ
ij(g)eλ

i .

Denoting M(g) := (M1(g), . . . , Mr(g)) ∈ ×r
λ=1Mnλ

(C), we can ex-
tend the map g 7→ M(g) C-linearly to C[G], which recovers (III.D.3).
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The upshot is that we may think of C[G] as comprising all r-
tuples of matrices

M = (M1, . . . , Mr) ∈ ×r
λ=1Mnλ

(C),

or if you prefer, giant block matrices diag(M1, . . . , Mr) ∈ M∑ nλ
(C).

The action of such block matrices (think C[G]) on themselves (think
Vreg) by left multiplication makes the decomposition of Vreg into nλ

copies (columns) of each nλ-dimensional representation quite con-
crete. This equivalence also tells us that there is another basis of
Vreg: recalling that eij is the matrix with (i, j)th entry 1 and all other
entries 0, let eλ

ij ∈ ×r
λ=1Mnλ

(C) denote the r-tuple whose λth entry
is eij and whose other entries are 0. Then {eλ

ij}λ,i,j is a basis of Vreg.
What is the relation to {g}g∈G?

Fourier inversion formula.

To find this relation, first notice that any ϕ ∈ HomC(Vµ, Vλ) can
be “averaged over G” to yield

ϕ̃ := 1
|G| ∑g∈G g−1 ◦ ϕ ◦ g ∈ HomC[G](Vµ, Vλ).

(Indeed, ϕ̃ intertwines the action of G since for γ ∈ G, reindexing
by g′ = gγ yields ϕ̃(γ.v) = ∑g g−1.ϕ(gγ.v) = γ ∑g′(g′)−1.ϕ(g′.v) =
γ.ϕ̃(v).) Writing this with respect to the bases gives eλ [ϕ]eµ =: (ϕij)

and3

(III.D.5) ϕ̃i` = ∑g∈G ∑j,k Mλ
ij(g∗)ϕjk Mµ

k`(g).

By Schur’s lemma, HomC[G](Vµ, Vλ) is {0} if λ 6= µ and C if λ = µ

(again, the only division algebra over C is C itself). Accordingly, we
have ϕ̃i` = Cµ,ϕδi`δλµ for some constant Cµ,ϕ (depending on µ and ϕ

and only defined if λ = µ).
When λ = µ, we can calculate Cµ,ϕ by remembering that the trace

∑i Bii of a matrix (Bij) is invariant under conjugation:

(III.D.6) tr(A−1BA) = tr(B).

3Here I am writing g∗ = 1
|G| [g

−1] ∈ C[G], which we can insert in M(·) by the
C-linear extension mentioned above.
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Since Mµ(g∗) = 1
|G|(Mµ(g))−1, we have

Cµ,ϕidVµ = [ϕ̃]eµ = 1
|G| ∑g(Mµ(g))−1[ϕ]eµ Mµ(g).

Applying trace now yields nµCµ,ϕ = tr(ϕ̃) = tr(ϕ), so that Cµ,ϕ =
1

nµ
tr(ϕ).

In particular, taking [ϕ]eµ = eµ
αβ, i.e. ϕjk = δjαδkβ, yields tr(ϕ) =

δαβ hence Cµ,ϕ = 1
nµ

δαβ. Putting everything together, we get

1
nµ

δαβδi`δλµ = ∑g ∑j,k Mλ
ij(g∗)δjαδkβMµ

k`(g)

= ∑g Mλ
iα(g∗)Mµ

β`(g)

= Mµ
β`

(
∑g Mλ

iα(g∗)[g]
)(III.D.7)

as Mµ
β` is C-linear. Since eλ

αi ∈ C[G] is by definition the element with

Mµ
β`(e

λ
αi) = δαβδi`δλµ, we arrive at the Fourier inversion formula

(III.D.8) ∑
g∈G

Mλ
iα(g∗)g =

1
nλ

eλ
αi

in Vreg. This gives the desired relation between the two bases.

Character theory.

Recall that a character of a group is a homomorphism from G to F∗

for some field F. Taking F = C, since C∗ ∼= AutC(C) we can think
of these as the 1-dimensional representations of G, or equivalently
(since trace is the identity on 1 × 1 matrices), as their traces. This
motivates the following more general notion for higher-dimensional
representations:

III.D.9. DEFINITION. Let (V, π) be a representation of a finite
group G over C. (That is, π : G → AutC(V) is the homomorphism
through which G acts.) The character of V is the C-valued function
χV(g) := tr(π(g)) on G.4 In particular, for the irreps Vλ we have

χλ(g) := χVλ
(g) = tr(Mλ(g)) = ∑nλ

i=1 Mλ
ii(g).

4That is, we take the trace of the matrix of π(g) with respect to any basis; this is
independent of the choice of basis by (III.D.6).
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I should remark right away that these are no longer homomor-
phisms from G to C∗. (They don’t intertwine multiplication, and can
take the value 0.) But they have many spectacular properties which
make them an indispensable tool for studying representations of G.

III.D.10. PROPOSITION. Let V be a representation of G. Then
(i) χV(1) = dim V.
(ii) χV(g−1) = χV(g).
(iii) χV is a class function, i.e. it is constant on conjugacy classes of G.
(iv) If W is another representation, then χV⊕W = χV + χW .
(v) If W is another representation, then χV⊗W = χVχW .

PROOF. (i) follows from π(1) = idV , and (iii) from (III.D.6) since
π(γgγ−1) = π(γ)π(g)π(γ)−1. For (iv), just note that for block-
diagonal matrices tr(diag(M1, M2)) = tr(M1) + tr(M2); (v) is HW.

Finally, each g ∈ G has finite order, so (the matrix of) π(g) is
diagonalizable5 with root-of-1 eigenvalues ξi. Since each ξ−1

i = ξ i,
we have π(g−1) = π(g) and taking traces gives (ii). �

III.D.11. EXAMPLE. Any symmetric group Sn has two obvious
1-dimensional irreps, given by 1 (trivial) and sgn. There is an obvi-
ous n-dimensional representation U, given by letting the permuta-
tion act tautologically on the standard basis {ei}n

i=1 of Cn. This is not
irreducible, because it contains a copy of the trivial representation
spanned by e1 + · · · + en. So it also contains a direct-sum comple-
ment st, the (n− 1)-dimensional standard representation, which is
just the subspace comprising vectors ∑i aiei with ∑i ai = 0.

The character of U is computed by observing that the trace of a
permutation (matrix) is the number of fixed elements, i.e. the num-
ber of “1-cycles” in the cycle-structure, which we write as Fσ. There-
fore χst = χU − χ1 is given by χst(σ) = Fσ − 1.

Notice that (III.D.7) looks a bit like an orthogonality relation for
matrix entries in the regular representation. To make this actually

5In characteristic 0, no Jordan block (of dimension > 1) has finite order.
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true, one needs to construct a G-invariant inner-product (i.e. positive-
definite Hermitian form) on each Vλ and choose the {eλ

i } to be or-
thonormal bases. But we’re going to do something a bit simpler:
define an inner product on C-valued functions on G by

〈φ, ψ〉 :=
1
|G| ∑

g∈G
φ(g)ψ(g).

Denoting the conjugacy classes of G by {C`}N
`=1, we have the

III.D.12. THEOREM (First Orthogonality Relation). The characters
of distinct irreps are orthogonal: 〈χµ, χλ〉 = δµλ; more explicitly, we have

∑N
`=1 |C`|χµ(C`)χλ(C`) = |G|δµλ.

PROOF. We have

∑N
`=1 |C`|χµ(C`)χλ(C`) = ∑g∈G χµ(g)χλ(g)

= ∑g∈G χλ(g−1)χµ(g)

= ∑g∈G(∑
nλ
i=1 Mλ

ii(g−1))(∑
nµ

j=1 Mµ
jj(g))

= |G|∑i,j

(
∑g∈G Mλ

ii(g∗)Mµ
jj(g)

)
which by (III.D.7) equals |G|nµ

∑i,j δijδijδλµ. If λ = µ, this becomes
|G|
nµ

∑
nµ

i,j=1 δij = |G|; so we obtain finally |G|δλµ. �

Since orthogonal sets are independent, this has the

III.D.13. COROLLARY. Given V, W representations of G, we have V ∼=
W (as representations) ⇐⇒ χV = χW .

PROOF. Write V ∼= ⊕λV⊕pλ

λ and W ∼= ⊕λV⊕qλ

λ . Then χV =

∑λ pλχλ and χW = ∑λ qλχλ by III.D.10(iv). Since the {χλ} are in-
dependent in the vector space of class functions, we have χV = χW

⇐⇒ pλ = qλ (∀λ). �

III.D.14. COROLLARY. (i) The multiplicity of Vµ in V is 〈χµ, χV〉.
(ii) A representation V of G is irreducible ⇐⇒ 〈χV , χV〉 = 1.

PROOF. If V ∼= ⊕λV⊕pλ

λ , then by III.D.10(iii) and III.D.12 we have
〈χλ, χV〉 = ∑λ pλδλµ = pλ and 〈χV , χV〉 = ∑λ p2

λ. �
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III.D.15. EXAMPLE. For G = Sn, I claim that the “standard rep-
resentation” st defined in III.D.11 is irreducible. Consider the action
of G on X := {1, . . . , n} and X× X; then the number of fixed points
for σ ∈ G is Xσ = Fσ resp. (X× X)σ = F2

σ .
On the other hand, the number of orbits is |X/G| = 1 resp. |(X×

X)/G| = 2, because the action of G on {1, . . . , n} is doubly transi-
tive. Burnside’s Lemma [Algebra I, II.N.2] immediately tells us that
∑σ∈G Fσ = |G| and ∑σ∈G F2

σ = 2|G|. This yields

〈χst, χst〉 = 1
|G| ∑σ∈G(Fσ − 1)2 = 1

|G|
(
∑σ F2

σ − 2 ∑σ Fσ + ∑σ 1
)
= 1,

and so the claim follows from III.D.14(ii).

Next, look at Z ⊂ C[G], the center of the group ring: we shall
compute its dimension in two different ways.

(1) First, think in terms of×r
λ=1Mnλ

(C). The minimal central idem-
potents {∑nλ

i=1 eλ
ii}r

λ=1 span Z, since the center of each block
Mnλ

(C) is just Cidnλ
. So dimC Z = r, the number of irreps.

(2) Next, think in terms of the group ring C[G]. The elements
{∑g∈C`

[g]}N
`=1 are obviously fixed under conjugation by each

[γ], hence belong to Z. Moreover, anything in Z must be in-
variant under 1

|G| ∑g[g]( · )[g−1], and this forces it to be a sum
of these elements. So they are also a basis, and dimC Z = N,
the number of conjugacy classes.

Together with the independence of the {χλ}r
λ=1, this proves the

III.D.16. THEOREM. The number of conjugacy classes in G is equal to
the number of irreducible representations of G, i.e. N = r. Consequently,
the χλ are a basis for the class functions on G.

We can use this to establish yet another

III.D.17. THEOREM (Second Orthogonality Relation).

|C`|∑r
λ=1 χλ(Ck)χλ(C`) = |G|δ`k.

PROOF. Define “indicator” class functions on G by f`(Ck) := δk`.
We may write these in terms of the basis {χλ}, viz. f` = ∑λ αλχλ.
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Then
ατ = ∑λ αλδλτ = ∑λ αλ〈χλ, χτ〉 = 〈 f`, χτ〉

= 1
|G| ∑h∈C`

χτ(h) =
|C`|
|G| χτ(C`)

=⇒ f`(g) = ∑λ αλχλ(g) = |C`|
|G| ∑λ χλ(C`)χλ(g). Taking g ∈ Ck

gives the result. �

III.D.18. COROLLARY. (i) The nλ := dim Vλ satisfy ∑r
λ=1 n2

λ = |G|.
(ii) If G is abelian, then every nλ = 1, i.e. all irreps are 1-dimensional and
given by “characters of G”.

PROOF. Of course, we already know (i) by Artin-Wedderburn.
But it is nice to see it confirmed by character theory: taking C` =

Ck = {1} in III.D.17, we get ∑λ(χλ(1))2 = |G| (now apply III.D.10(i)).
If G is abelian, every conjugacy class has one element, so there are
|G| of them. By III.D.16, there are |G| irreps and so r = |G| in (i),
which forces all nλ = 1. �

III.D.19. EXAMPLE. Take the (cyclic) abelian group G = Zn. Its
representations are necessarily 1-dimensional, so their characters are
characters of G, i.e. homomorphisms G → C∗. So the character table
is simply

0̄ 1̄ 2̄ · · · n− 1
χ0 1 1 1 · · · 1
χ1 1 ζn ζ2

n · · · ζ̄n
...

...
...

χn−1 1 ζ̄n ζ̄2
n · · · ζn

Usually the characters of irreps are numbered 1 to r, but here starting
with 0 made more sense. The top line of the character table lists the
conjugacy classes (which here are simply the elements of G), and the
interior of the table lists the values taken by each character.

III.D.20. EXAMPLE. For a nonabelian group, consider G = S4. It
has five conjugacy classes, corresponding to the possible cycle struc-
tures. So there must be five irreps with characters χ1, . . . , χ5. As with



188 III. REPRESENTATION THEORY

any symmetric group, there are two obvious 1-dimensional irreps
(characters of G), given by V1 := 1 (trivial) and V2 := sgn (alternat-
ing). By III.D.15, we also have the standard irrep V3 := st, of dimen-
sion 3. The tensor product of any character of G with an irrep is al-
ways again irreducible, by III.D.10(v) and III.D.14(ii) (since multiply-
ing each χ(g) by a root of unity doesn’t change 1

|G| ∑g |χ(g)|2 = 1),
and so V4 := st⊗ sgn is another 3-dimensional irrep.

This leaves V5. The sum of squares of dimensions must satisfy
∑5

λ=1 n2
λ = |G| = 24, from which n5 = 2. We can now easily com-

pute its character χ5 by noticing that the regular representation has
χC[G](1) = |G| and χC[G](g) = 0 for g 6= 1. (This is a general fact.
Why?) Since C[G] = V1⊕V2⊕V⊕3

3 ⊕V⊕3
4 ⊕V⊕2

5 , we obtain the final
row of the character table for S4

1 (··) (· · ·) (· · ··) (··)(··)
χ1 1 1 1 1 1
χ2 1 −1 1 −1 1
χ3 3 1 0 −1 −1
χ4 3 −1 0 1 −1
χ5 2 0 −1 0 2

from χ5 = 1
2 χC[G] − 1

2 χ1 − 1
2 χ2 − 3

2 χ3 − 3
2 χ4. One can show that V5

is obtained by composing the quotient map S4 � S4/V4
∼= S3 with

the standard representation of S3. (Can you do it with characters?)

III.D.21. REMARK. If we replace χ(g) by χ(g−1), everything we
have done in this section (over C) works over a more general field
F, provided (a) char(F) does not divide |G| and (b) F is a splitting
field for G. The latter means that F[G] splits into absolutely irre-
ducible representations – irreps which remain irreducible over F̄.
(Failure of (b) is equivalent to one or more of the matrix rings in
Artin-Wedderburn no longer having coefficients in F, but in a larger
field or division algebra.) The HW problems feature instances both
where Q is, and where Q is not, a splitting field for G in this sense.
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Induced representations.

I’d like to briefly mention a very useful construction of repre-
sentations of groups from those of its subgroups, which can be de-
scribed very nicely in terms of group algebras. So let H ≤ G be any
subgroup of our finite group G.

We first point out the obvious fact that a representation π : G →
AutC(V) can be composed with the inclusion homomorphism H ↪→
G, to yield the restriction

ResG
Hπ : H → AutC(V)

of π to H, which we can informally write as Res(V) when G and H
are understood.

Next, suppose W ⊂ V is an H-invariant subspace, i.e. a subrepre-
sentation W ⊂ Res(V) (of H). Notice that g.W := π(g)(W) depends
only on the coset gH =: γ, so it makes sense to write γ.W. We say
that V is induced by W if V = ⊕γ∈G/Hγ.W.

Now begin from the opposite end of things: suppose we are
given a representation η : H → AutC(W) of H. Then there exists
a unique representation of G induced by W, called IndG

Hη, or infor-
mally Ind(W). In fact, it is given by

(III.D.22) Ind(W) := C[G]⊗C[H] W,

where the tensor product over a ring means that [g]⊗ hw = [gh]⊗w,
and the action of G is by g.([g′] ⊗ w) = [gg′] ⊗ w. Note that the
dimension of (III.D.22) is |G/H|dim(W).

To make this completely explicit, let gγ be coset representatives.
For each coset γ ∈ G/H, let Wγ be a copy of W whose elements are
formally written gγw (with w ∈ W), and set V := ⊕γ∈G/HWγ. Then
every element of V may be written uniquely as v = ∑γ gγwγ, and we
define the action of G on V by g.(gγwγ) := gγ′(hwγ) if ggγ = gγ′h.

The first main theorem on induced representations is Frobenius
reciprocity. Given a representation W of H and U of G, it reads

(III.D.23) 〈χInd(W), χU〉G = 〈χW , χRes(U)〉H
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in terms of the inner products on functions on G and H respectively.
If W and U are both irreducible, then (together with III.D.14(i)) this
has the immediate corollary that the multiplicity of U in Ind(W) equals
the multiplicity of W in Res(U).

III.D.24. EXAMPLE. The alternating group A5 possesses a unique
5-dimensional irrep. One way to construct it is by taking H ≤ A5 to
be a copy of A4, and applying IndA5

H one of the two nontrivial char-
acters (1-diml irreps) of A4. Another way is to construct it is related
to the action of S5 on its 6 Sylow 5-subgroups, and is considered in
the HW.

Group cohomology.
Finally, to wrap up representation theory, I describe one interest-

ing thing you can do with representations of G. In fact, a little more
generally, let M be an abelian group on which G acts by automor-
phisms: so it could be a representation, or it could be the multiplica-
tive group of a field.

Define Ck := Ck(G, M) (k ≥ 0) to be the group of all functions
ϕ : G×k → M (where G×0 := {1}, G×1 := G, G×2 := G×G, etc.). We
also need a differential d : Ck → Ck+1, which is given by the formula

(dϕ)(g1, . . . , gk+1) : = g1.ϕ(g2, . . . , gk+1)

+ ∑k
i=1(−1)i ϕ(g1, . . . , gi−1, gigi+1, gi+2, . . . , gk+1)

+ (−1)k+1ϕ(g1, . . . , gk).

You can check that d ◦ d = 0, so that im(d) ⊆ ker(d) in each Ck. We
say the sequence (or “cochain complex”)

0→ C0 d→ C1 → · · · → Ck−1 d→ Ck d→ Ck+1 → · · ·

is exact at the kth term if this inclusion is an equality. Cohomology
measures the failure of our complex (C•, d) to be exact.
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III.D.25. DEFINITION. The kth cohomology group of G with coef-
ficients in M is

Hk(G, M) :=
ker{d : Ck → Ck+1}
im{d : Ck−1 → Ck}

.

Let’s consider two special cases. For k = 0, we note that C0 = M
and the differential sends m ∈ M to dm ∈ C1, which is a function
on G defined by (dm)(g) := g.m−m. So the kernel consists of those
m ∈ M with g.m = m, i.e.

(III.D.26) H0(G, M) = MG

are the G-invariants. For k = 1, the elements of C1 are functions
ϕ : G → M, and the differential reads (dϕ)(g1, g2) = g1.ϕ(g2) −
ϕ(g1g2) + ϕ(g1). So the cohomology is
(III.D.27)

H1(G, M) =
{ϕ : G → M | ϕ(gg′) = g.ϕ(g′) + ϕ(g)}
{ϕ : G → M | ϕ(g) = g.m−m for some m} ,

the so-called crossed homomorphisms modulo principal crossed homo-
morphisms. If the action of G on M is trivial, then (III.D.26) is M and
(III.D.27) just becomes Hom(G, M).

More intriguing is the case where G is the Galois group of an ex-
tension L/K, acting on M = L∗ through the automorphisms. (Here
the group operation on M will be written multiplicatively.) In that
case, (III.D.26) is evidently K∗, but what about H1? Well, the Lemma
associated with Hilbert’s Theorem 90 says, verbatim:6 let ϕ : G → L∗

be a map satisfying ϕ(gg′) = g(ϕ(g′))ϕ(g). Then there exists ` ∈ L∗

such that ϕ(g) = g(`)/`. So the crossed homomorphisms are all
principal, and

(III.D.28) H1(G, L∗) = {0},

thus revealing Hilbert’s theorem as the foundational result in Galois
cohomology.

6I have made slight changes in the notation, including replacing `0 by ` := `−1
0 .


