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I.J. Solvable groups and radical extensions

Let G be a group. In the event that it is a Galois group, we want
criteria that will correspond to being able to build up the field ex-
tension by adjoining a sequence of roots, in order to solve the corre-
sponding polynomial equations by radicals.

Normal and derived series.

I.J.1. DEFINITION. (i) A normal series for G is a sequence of sub-
groups of the form

G = G0 . G1 . G2 . · · · . Gm = {1}.

(Warning: G0 ≥ G2 etc. need not be normal.)
(ii) G is solvable (or soluble) if it has a normal series with abelian

quotients Gi/Gi+1.

I.J.2. EXAMPLES.

(A) Any finitely generated abelian group.

(B) Dihedral groups Dn: use Dn . Zn . {1}.

(C) p-groups: by [Algebra I, II.L.8], G has an index p normal sub-
group G1, the quotient by which is Zp. Iterate this observation.

(D) S3 and S4 are solvable: use the normal series

S3 .A3 (∼= Z3) . {1} and S4 .A4 . V4 . {1}.

(E) S5 is not, because A5 is its only normal subgroup, and A5 itself is
simple30 and nonabelian. That Sn is also non-solvable for n ≥ 6 is
then an immediate consequence of part (i) of the next result, since it
has S5 as a subgroup.

I.J.3. THEOREM. (i) If G is solvable and H ≤ G, then H is solvable.
(ii) Given H E G, G is solvable ⇐⇒ H and G/H are solvable.

Before we prove this, let’s record some bits of the first and second
isomorphism theorems that we will want to invoke: given groups

30This was [Algebra I, II.I.13].
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G′ E G and H ≤ G, we have

(I.J.4) G′ ∩ H E H and H/(G′ ∩ H) ∼= G′H/G′ ;

while if also G′ ≤ H and H E G, then

(I.J.5) G′ E H, H/G′ E G/G′, and (G/G′)/(H/G′) ∼= G/H.

PROOF OF I.J.3(i). Start with a normal series for G, with terms
Gi E Gi−1. Setting Hi := H ∩ Gi, we have

Hi = H ∩ Gi−1 ∩ Gi = Hi−1 ∩ Gi E Hi−1

by (I.J.4) (take G = Gi−1, G′ = Gi, and H = Hi−1), which also gives

Hi−1/Hi
∼= Hi−1/(Hi−1 ∩ Gi) ∼= GiHi−1/Gi ≤ Gi−1/Gi.

Since Gi−1/Gi is abelian, so is Hi−1/Hi. �

The proof of part (ii) gets a little messy without introducing the
derived series of G, which I’ll do now.

I.J.6. DEFINITION. The derived group DG of G is the subgroup
generated by all commutators [g1, g2] = g−1

1 g−1
2 g1g2.

Here are some brief remarks on properties of derived groups:

• Of course, if G is abelian, then DG = {1}.
• Any homomorphism η : G → H restricts to a homomorphism

η|DG : DG → DH of derived groups, since η must send commuta-
tors to commutators. Clearly, if η is surjective, then η(DG) = DH.
• In particular, automorphisms of G restrict to automorphisms of

DG; this implies that DG E G, but if G has nontrivial outer auto-
morphisms, this is a stronger statement than normality.
• Moreover, given a normal subgroup K E G, we may restrict inner

automorphisms (conjugation by elements) to K, obtaining a com-
position Inn(G) → Aut(K) → Aut(DK) which exhibits DK as a
normal subgroup of G.
• In particular, taking K = DG, we get that D2G := D(DG) is nor-

mal in DG and G. Iteratively defining DkG := D(Dk−1G) gives a
sequence of normal subgroups (in each other and in G).
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I.J.7. DEFINITION. The derived series of G is

G . DG . D2G . D3G . · · · .

That the successive quotients DkG/Dk+1G are abelian follows
from the

I.J.8. LEMMA. G/DG is abelian. In fact, DG is the intersection of all
K E G for which G/K is abelian.

PROOF. Given g, h ∈ G and K E G, we have

[gK, hK] = (gK)−1(hK)−1(gK)(hK) = [g, h]K.

Thus DG ≤ K ⇐⇒ [g, h] ∈ K (∀g, h) ⇐⇒ [g, h]K = K (∀g, h) ⇐⇒
[gK, hK] = K (∀g, h) ⇐⇒ D(G/K) = {1} ⇐⇒ G/K abelian. �

While normal series sometimes have abelian quotients and al-
ways terminate at {1}, the derived series always has abelian quo-
tients and sometimes terminates at {1}. The latter “sometimes” is
the key to our whole problem:

I.J.9. PROPOSITION. G is solvable ⇐⇒ DnG = {1} for some n ≥ 1.

PROOF. (⇐= ): if some DnG = {1}, then the derived series is a
normal series (with abelian quotients). So G is solvable.

( =⇒ ): given G = G1 . G2 . · · · . Gm = {1} with abelian factors,
we have Gk+1 ≥ DGk (∀k) by applying Lemma I.J.8 to subgroups of
Gk (take K = Gk+1). So G2 ≥ DG1 = DG, and inductively

Gk ≥ Dk−1G =⇒ Gk+1 ≥ DGk ≥ D(Dk−1G) = DkG

for all k. But then Dm−1G ≤ Gm = {1}. �

We are ready to prove I.J.3(ii), and to give a shorter proof of (i):

PROOF OF THM. I.J.3. (i) If H ≤ G, then DiH ≤ DiG (∀i). If G
is also solvable, then DnG = {1} for some n and hence DnH = {1}.
Apply I.J.9.

(ii) ( =⇒ ): If G is solvable, then H is by (i). Consider η : G �
G/H; applying the remarks after I.J.6, we have η(DG) = D(G/H),
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and by iteration η(DkG) = Dk(G/H) (∀k). By I.J.8, for some n {1} =
η({1}) = η(DnG) = Dn(G/H), and thus G/H is solvable.

(⇐= ): Again we just use I.J.9. If G/H is solvable, then for some
k we have Dk(G/H) = {1}, and

η(DkG) = Dk(G/H) = {1} =⇒ DkG ≤ ker(η) = H.

If H is also solvable, there exists an ` for which {1} = D`H ≥
D`(DkG) = D`+kG, and G is solvable. �

Root towers.

It is now time to reveal the relation to field theory. Let L/K be an
extension.

I.J.10. DEFINITION. (a) α ∈ L is radical over K if, for some n, αn

belongs to K.
(b) L/K is an extension by radicals (or root tower) if there is a

sequence L = Ls ⊃ · · · ⊃ L1 ⊃ L0 = K such that Li = Li−1(αi) (∀i),
where αi is radical over Li−1. The minimal ni for which α

ni
i ∈ Li−1

are called the orders of the extension.
(c) A polynomial f ∈ K[x] is solvable by radicals if there is an

extension by radicals L/K over which f splits. (This could be bigger
than a splitting field extension.) As in (b), we can speak of the orders
of the radicals involved.

I.J.11. THEOREM. Suppose f ∈ K[x] is separable with solvable Ga-
lois group GalK( f ), and that char(K)6

∣∣ |GalK( f )|. Then f is solvable by
radicals.

PROOF. Put d := |GalK( f )|, let M/K be a SFE for g := xd − 1,
and write ζ ∈ M for a primtive dth root of unity.31 Since d is nonzero
modulo char(K), g′ = dxd−1 and g are coprime, and (by I.E.3) the
roots 1, ζ, ζ2, . . . , ζd−1 of g in M are distinct. This is the first step in
our extension by radicals.

Let L/M be a SFE for f , and writeR f for the roots of f in L. Then
L = M(R f ), and L0 := K(R f ) is a splitting field for f over K. (Since

31Of course, if K ⊂ C then it’s just M = K(ζd) and ζ = ζd.
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both f and g are separable, L/K and all intermediate extensions are
separable.) This is exactly the setting of the Theorem on Natural
Irrationalities I.G.30 (with the simplification I.G.31 due to separabil-
ity of f ), which presents GalM( f ) = Aut(L/M) as a subgroup of
GalK( f ) = Aut(L0/K).

Since GalK( f ) is solvable, so is G := GalM( f ) by I.J.3. So we have
a normal series

{1} = Gr C Gr−1 C · · · C G0 = G

with abelian quotients. In fact, by the FTFGAG (structure theorem)
we may assume that the Gi/Gi+1 are cyclic. By the Galois correspon-
dence, applying Inv produces a tower

L = Lr ⊃ Lr−1 ⊃ · · · ⊃ L0 = M

with
Aut(L/Lj) = Gj C Gj−1 = Aut(L/Lj−1).

Applying I.G.22(iv-v)32 yields that Lj/Lj−1 is a normal (hence Ga-
lois) extension with Aut(Lj/Lj−1) ∼= Gj−1/Gj cyclic.

At this point it remains to show, for each j, that Lj may be ob-
tained by adjoining a radical to Lj−1. Henceforth we fix any j and
do just that. Write δ := |Gj−1/Gj| = [Lj:Lj−1|, note that δ | d and
Gj/Gj−1 = 〈σ〉 ∼= Zδ, and let ω ∈ M be a power of ζ which is a
primitive δth root of 1.

Let r ≤ δ be the smallest integer for which there exists a linear
dependency ∑r

k=1 `kσik(β) = 0 (`k ∈ Lj, 0 ≤ i1 < · · · < ir < δ)
valid for all β ∈ Lj. (Clearly r ≥ 2.) Choose β0 ∈ Lj for which
σi1(β0) 6= σir(β0), and take the difference of ∑r

k=1 `kσik(ββ0) = 0 and
∑r

k=1 `kσik(β)σir(β0) = 0. The rth terms of the sums cancel and we
are left with a dependency (valid for all β) with fewer than r terms,
contradicting the minimality of r.

So there is no such dependency, and there must exist β ∈ Lj for
which α := ∑δ−1

i=0 ωiσi(β) ∈ Lj is nonzero. I claim that this is the

32We can replace “H E G” there by Gj E Gj−1, since L/Lj−1 is Galois.
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desired radical. First, notice that σ(α) = ∑δ−1
i=0 ωiσi+1(β) = ω−1α by

reindexing. Hence σ(αδ) = αδ =⇒ a := αδ ∈ Lj−1 =⇒ α is indeed
radical over Lj−1.

Observe next that xδ − a = ∏δ−1
i=0 (x − ωiα) has splitting field

Lj−1(α) over Lj−1. This factorization has to work because the {ωiα}
are all roots, and distinct. But 1, σ, . . . , σδ−1 are also distinct, and be-
long to Aut(Lj−1(α)/Lj−1), making

[Lj−1(α):Lj−1] = |Aut(Lj−1(α)/Lj−1)| ≥ δ.

Hence Lj−1(α) = Lj and we are done. �

Composition series.

That was a long proof, but I thought it important to see some
light at the end of the tunnel. To get a shorter proof of this Theorem,
as well as its converse, we need to introduce one more group theory
concept (which also has a module-theoretic version that is used in
commutative algebra and representation theory).

I.J.12. DEFINITION. A composition series for G is a normal series
such that each Gi+1 is maximal normal in Gi: that is, there does not
exist H with Gi . H . Gi+1 and H 6= Gi+1, Gi. Equivalently (by (I.J.5)),
each composition factor Gi/Gi+1 is simple.

Let G be a finite group. Then a composition series certainly exists
by taking successive maximal proper normal subgroups.

I.J.13. THEOREM (Jordan-Hölder). If {Gi}s
i=0 and {Hj}t

j=0 are two
composition series for G, then they have the same set of composition factors,
up to isomorphism and reordering.

PROOF. Induce on |G|. Call two CS equivalent if the statement of
the Theorem holds (because it’s an equivalence relation!). Note that
G0 = G = H0. If G1 = H1 we are done by induction.

So assume G1 6= H1. Clearly neither can contain the other, by
maximal normality of G1, H1 in G. Together with G1, H1 ≤ G1H1 E G,
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this maximality forces G1H1 = G. By (I.J.4),

G/G1 = G1H1/G1
∼= H1/(G1 ∩ H1) and

G/H1 = G1H1/H1
∼= G1/(G1 ∩ H1) ;

(I.J.14)

and by (I.J.5), this gives that K2 := G1 ∩ H1 is maximal normal in H1

and in G1. Writing (I.J.14) in the form

(I.J.15) G0/G1
∼= H1/K2 and H0/H1

∼= G1/K2,

and appending to these a CS for K2, yields two CS for G (both of the
same length u) — in addition to the original {Gi} and {Hj}.

Now G0 . G1 . K2 . · · ·Ku = {1} and G0 . G1 . G2 . · · · . Gs =

{1} have the same G1, and these CS are equivalent by induction.
The same goes for H0 . H1 . K2 . · · ·Ku = {1} and H0 . H1 . H2 .

· · · . Hs = {1}. Finally, G0 . G1 . K2 . · · ·Ku = {1} and H0 . H1 .

K2 . · · ·Ku = {1} are equivalent because the first two composition
factors satisfy (I.J.15), and the later ones Ki/Ki+1 are the same. By
transitivity, {Gi} and {Hj} are equivalent. �

So we can speak unambiguously of the composition factors of a
finite group.

I.J.16. THEOREM. G is solvable ⇐⇒ its composition factors are cyclic
of prime order.

PROOF. ( =⇒ ): If G is solvable, so are its subquotients; in par-
ticular, the composition factors Gi/Gi+1 in a CS are solvable. By
definition, they are also simple, and so their only normal series is
the trivial one Gi/Gi+1 . {1}. So if they are solvable, they must be
abelian. But then, if they are simple, by the p-primary version of the
FTFGAG [Algebra I, IV.C.13] they must have prime order.

(⇐= ): Obviously cyclic groups of order p are abelian. �

Galois’s Theorem.

Let f ∈ K[x] be a separable polynomial of degree n, with split-
ting field extension L0/K of degree d not divisible by char(K). The
latter is Galois, so GalK( f ) = Aut(L0/K) has fixed field K, and
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|GalK( f )| = [L0:K] =: d. Moreover, through its action on R f , we
may regard GalK( f ) as a subgroup of Sn, which is transitive if f
is irreducible. We are going to show that solubility of GalK( f ) is
equivalent to solubility of f by radicals, with some added caveats in
positive characteristic.

It is useful to adopt the terminology that a Galois extension is
abelian [resp. cyclic] if its automorphism group is. For instance, the
next statement makes precise the notion that “cyclotomic extensions
are abelian”.33

I.J.17. LEMMA. Let f := xn − 1 and K be a field. Then GalK( f ) ≤
Z∗n; in particular, the SFE is abelian.

PROOF. First assume char(K) - n. We then have gcd( f , f ′) ∼ 1,
so the rootsR f = {ζ j}n−1

j=0 ⊂ L0 = K(ζ) are distinct; and Zn ∼= R f ≤
K(ζ)∗ as groups =⇒ GalK( f ) ≤ Aut(Zn) ∼= Z∗n by I.G.26.

If char(K) = p | n, then write n = pkm (p - m) and f = (xm −
1)pk

=: gpk
. Then we are back in the above case (with f , n replaced

by g, m). Obviously f is separable; and Z∗m is a subgroup of Z∗n. �

I.J.18. LEMMA. Suppose K contains n distinct nth roots of 1, and a ∈
K∗. Then f := xn − a is separable/K with GalK( f ) ∼= Zm for some m | n
(with m = n ⇐⇒ f irreducible/K). In particular, the SFE is cyclic.

PROOF. Write 〈ζ〉 ⊂ K for the nth roots of 1, whose existence im-
ply char(K) - n ( =⇒ f separable), and α ∈ L0 for an nth root of a.
Then R f = 〈ζ〉α ⊂ L0 =⇒ L0 = K(α) =⇒ σ ∈ Aut(L0/K) is de-
termined by σ(α) = ζ j(σ)α. This presents Aut(L0/K) as a subgroup
of Zn, hence cyclic of order m | n. By I.G.17, f is irreducible ⇐⇒
Aut(L0/K) acts transitively on the roots ⇐⇒ m = n. �

The next result gives a sort of converse. Its proof demonstrates
that the construction of the radicals in the proof of I.J.11 above sim-
plifies greatly when δ is a prime p.

33I should add that it is important in number theory (esp. class field theory) that
all abelian extensions of Q are contained in a cyclotomic field Q(ζn); this is the
Kronecker-Weber theorem.
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I.J.19. LEMMA. Suppose a field K contains p distinct pth roots of 1,
and L/K is cyclic (Galois) of degree p. Then L = K(α), with αp ∈ K.

PROOF. Write {ζ i}p−1
i=0 ⊂ K for the pth roots. Any β ∈ L \ K gives

K(β) = L since [L:K] is prime. Set αi := ∑
p−1
j=0 ζ ijσj(β), and note that

σ(αi) = ζ−iαi. So σ(α
p
i ) = α

p
i =⇒ α

p
i ∈ K (∀i).

Notice that the matrix (ζ ij) relating the {σj(β)} and {αi} has
(Vandermonde) determinant ∏0≤i<j<p(ζ

j − ζ i) 6= 0, so is invertible.
Thus we can write β as a K-linear combination of the {αi}, which
means that some αi0 =: α /∈ K. Clearly, K(α) = L. �

I.J.20. LEMMA. Let L/K be a finite separable extension, Lc a normal
closure. Then the conjugates {σ(L) | σ ∈ Aut(Lc/K)} generate Lc/K.

PROOF. Let L′ be the subfield of Lc they generate. It is closed
under Aut(Lc/K). Since the fixed field of Aut(Lc/K) is K, the fixed
field of Aut(Lc/K)|L′ ≤ Aut(L′/K) is also K, and so L′/K is normal.
Conclude that L′ = Lc. �

I.J.21. LEMMA. Let L/K be a separable extension by radicals. Then Lc

is an extension by radicals, whose orders equal or divide those of L/K.

PROOF. In the notation of I.J.10, we have L = K(α0, . . . , αs−1). By
I.G.20, Lc = K({σ(α0), . . . , σ(αs−1)}σ∈Aut(Lc/K)). Adjoining all the
σ(α0)’s (one by one), then the σ(α1)’s, and so forth, we obtain the
desired root tower. �

I.J.22. GALOIS’S THEOREM. Given a polynomial f ∈ K[x]:
(A) If f is solvable by radicals of orders34 coprime to char(K), then

GalK( f ) is solvable (and f is separable).
(B) If f is separable/K, char(K) 6

∣∣|GalK( f )|, and GalK( f ) is solvable,
then f is solvable by radicals (of orders coprime to char(K)).

34Note that “orders” are the powers of the radicals that belong to the previous step
in the root tower, not necessarily the degree of the field extension it yields. This
distinction really matters for roots of 1, and is why we don’t get char(K) 6

∣∣|GalK( f )|
in (A).
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PROOF. (A) We are given a root tower L/K, containing a splitting
field L0 for f , that arises by adjoining roots of orders δi not divisible
by p := char(K). These extensions are obviously separable, and thus
so is the whole tower. (Clearly, f is separable/K because it splits
over a separable extension of K.) Writing δ := lcm({δi}), xδ − 1 is
also separable (as p - δ) and we may assume the tower “begins” by
adjoining δ distinct δth roots of 1. Finally, by Lemma I.J.21, we may
assume that L/K is Galois.

Now observe that each step in the tower is abelian and normal by
Lemmas I.J.17-I.J.18. (Clearly, it’s crucial that we add the roots of 1
first!) So under the Galois correspondence (applying Aut(L/·)), the
successive subgroups are normal, with abelian quotients, proving
that Aut(L/K) is solvable. Since L0/K is normal (being a SFE), we
have Aut(L/L0) E Aut(L/K), and according to I.J.3 Aut(L0/K) ∼=
Aut(L/K)/Aut(L/L0) is also solvable.

(B) Begin as in the proof of I.J.11: put d := |GalK( f )| and p :=
char(K) - d. Let M/K be obtained by adjoining a primitive dth root
of unity ζ (where we recall that ζ has d distinct powers since p - d).
Then let L [resp. L0 ⊂ L] be a SFE for f over M [resp. K]. Again
I.G.30 =⇒ GalM( f ) ≤ GalK( f ) =⇒ G := GalM( f ) solvable of
order dividing d. Now comes the simplification.

Invoking I.J.16, G has a composition series with cyclic factors of
prime orders pi dividing d. Applying Inv yields a tower of cyclic
(Galois) extensions of degrees pi. Since powers of ζ furnish the re-
quired pth

i roots of 1, I.J.19 says that the ith step in the tower is ob-
tained by adjoining a pth

i root. Hence f is solvable by radicals of
orders coprime to p. �

I.J.23. COROLLARY. If char(K) = 0, then f ∈ K[x] is solvable by
radicals ⇐⇒ GalK( f ) is solvable.

To state the obvious, this means that any cubic or quartic polyno-
mial over Q is solvable by radicals, but a quintic with Galois group
S5 or A5 is not.



I.J. SOLVABLE GROUPS AND RADICAL EXTENSIONS 81

I.J.24. REMARK. To see how I.J.22(B) might fail in positive char-
acteristic without the extra conditions, consider f (x) = xp − x− t ∈
K[x] where K = Zp(t). This is obviously separable (consider f ′);
and by the same argument as in I.H.10, f is irreducible, is split by
adjoining a single root β (then R f = β + Zp ⊂ L0 = K(β)), and has
GalK( f ) ∼= Zp. But the characteristic does divide the order of the
Galois group (they’re equal), and f actually fails to be solvable by
radicals!

How can that be? Well, we need to fit a degree-p extension inside
a root tower. You can separate root towers into prime-order ones by
adjoining successively smaller powers of your root. By the Tower
Law, one of these steps must have order p. In fact, it must be an
“order p” step that splits f : in the tower there must be J(α) ⊃ J with
αp ∈ J, such that J ∩ L0 = K and J(α) ⊃ L0. But this is impossible: β

would have to take the form h(α), h ∈ J(x); and then β = βp − t =
h(α)p − t = φ(h)(αp)− t ∈ J, a contradiction.

For this reason, in characteristic-p root-towers a special allowance
is sometimes made for the extensions generated by this sort of poly-
nomial, called Artin-Schreier extensions. On the other hand, there is
no reason to do this over finite fields. If K is finite, then any f ∈ K[x]
is solvable by radicals, because (as we know) any extension of finite
fields is cyclic.


