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I.K. Discriminants, cubics, and quartics

We now embark on the systematic computation of Galois groups
for specific polynomials, starting with low degree. Suppose that
char(K) 6= 2, and let f ∈ K[x] be monic of degree n, with splitting
field L and Galois group G := GalK( f ) := Aut(L/K). Let α1, . . . , αn

denote the roots R f ⊂ L (with possible repetitions), and recall from
I.G.17 that G acts transitively onR f ⇐⇒ f is irreducible.

I.K.1. DEFINITION. The discriminant of f is ∆ := δ2, where

δ := ∏
1≤i<j≤n

(αi − αj) ∈ L

Note that δ depends on a choice of ordering of the αi, but ∆ does not.

If f is separable, then the αi are distinct, L/K is Galois, and ∆ is
G-invariant (since G just permutes the roots). Otherwise, there is a
repeated root and ∆ is obviously 0. So we see that

(I.K.2) ∆ ∈ K

always holds. In fact, there are formulas (for any n) for ∆ in terms of
(polynomials in) the coefficients of f . So computationally speaking,
∆ actually precedes δ; and for this reason I will sometimes write

√
∆

instead of δ.

I.K.3. THEOREM. (i) ∆ = 0 =⇒ f has a repeated root in L.
(ii) ∆ 6= 0 and

√
∆ ∈ K =⇒ G ≤ An.

(iii) ∆ 6= 0 and
√

∆ /∈ K =⇒ G � An and K(δ) = Inv(G ∩An).

PROOF. If ∆ 6= 0, then f is separable and L/K Galois. Consider
σ ∈ G ≤ Sn as a permutation of the roots: by (slight) abuse of nota-
tion, σ(αi) = ασ(i). Since the number of inversions35 in a permutation
has the same parity as the number of transpositions,

(I.K.4) σ(δ) = ∏i<j(ασ(i) − ασ(j)) = sgn(σ)δ.

35These are pairs (i, j) for which i < j but σ(i) > σ(j). To see the equality mod 2,
note that each transposition changes the number of inversions by an odd number.
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If δ ∈ K (= Inv(G)), then δ is G-invariant and (I.K.4) forces G ≤
ker(sgn) = An.

On the other hand, if δ /∈ K, then it isn’t G-invariant and (again
by (I.K.4)) some σ ∈ G has sgn(σ) = −1. By (I.K.2), mδ = x2 − ∆
and [K(δ):K] = 2. Applying the FTGT to [G:G ∩ An] = 2 yields
[Inv(G ∩ An):K] = 2; since δ ∈ Inv(G ∩ An) ((I.K.4) again), we get
K(δ) = Inv(G ∩An). �

Clearly it would be useful to be able to compute ∆. Consider
the n × n Vandermonde matrix M = (αi−1

j )i,j,=1,...,n. This clearly has
det(M) = δ; and so

(I.K.5) ∆ = det(M tM) = det((λi+j−2)i,j,=1,...,n) , λk := ∑n
`=1αk

` ,

where the λk are the Newton symmetric polynomials sk(α) in the
roots. Recalling that these may be expressed in terms of the elemen-
tary symmetric polynomials ek(α), which (up to (−1)k) are just the
coefficients of f , we see a route to general formulas.

I.K.6. EXAMPLE. Let’s start with quadratics: f (x) = x2 + a1x +

a0 = (x− α1)(x− α2). Then λ1 = α1 + α2 = −a1 and λ2 = α2
1 + α2

2 =

(α1 + α2)
2 − 2α1α2 = a2

1 − 2a0. The resulting discriminant

∆ =

∣∣∣∣∣ 2 −a1

−a1 a2
1 − 2a0

∣∣∣∣∣ = 2a2
1 − 4a0 − a2

1 = a2
1 − 4a0

should look pretty familiar.

Cubics.

Turning to f (x) = x3 + a2x2 + a1x + a0, the linear substitution
x = y− 1

3 a2 yields

g(y) = y3 − py− q, with p = 1
3 a2

2 − a1 and q = 1
3 a1a2 − 2

27 a3
2 − a0.

Since this merely translates all roots by a2
3 , it doesn’t affect the dis-

criminant, the splitting field, or the Galois group, but greatly simpli-
fies the computation.

Now write λk and ek for the (Newton and elementary) symmetric
polynomials in the roots αi of g; we have e1 = α1 + α2 + α3 = 0,
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e2 = −p and e3 = q. By Newton’s identities we have

λ1 = e1 = 0,

λ2 = e2
1 − 2e2 = 2p,

λ3 = e3
1 − 3e1e2 + 3e3 = 3q, and

λ4 = e4
1 − 4e2

1e2 + 4e1e3 + 2e2
2 = 2p2,

which yield the discriminant

(I.K.7) ∆ =

∣∣∣∣∣∣∣
3 0 2p
0 2p 3q

2p 3q 2p2

∣∣∣∣∣∣∣ = 4p3 − 27q2.

Assuming that char(K) 6= 2, 3, f is separable (cf. (I.E.6)); and
assuming f irreducible, ∆ 6= 0. Moreover, G acts transitively, so is
either A3

∼= Z3 or S3. By Theorem I.K.3, we have

(I.K.8) G ∼= Z3 ⇐⇒ (δ =)
√

∆ ∈ K;

and in either case, [L:K(δ)] = 3 and Aut(L/K(δ)) ∼= Z3.
To enclose L/K in a root tower, first adjoin a cube root of unity ζ

to K, followed by δ; note that L(ζ)/K is a SFE (for (x3− 1)g(x)) hence
Galois. The tower of extensions K ⊂ K(δ) ⊂ L ⊂ L(ζ) evidently
has total degree 3, 6, or 12; this forces L(ζ)/K(δ, ζ) to be of order 3
hence cyclic (with generator σ). By I.J.19, L(ζ) = K(δ, ζ, θ) where
θ3 ∈ K(δ, ζ); and so our root tower is

K ⊂ K(ζ) ⊂ K(ζ, δ) ⊂ K(ζ, δ, θ) = L(ζ).

In fact, the proof of I.J.19 gives a formula for the cube root: we must
take θ = θ+ := α1 + ζα2 + ζ2α3, since then applying σ sends α1 7→
α2 7→ α3 7→ α1 =⇒ θ+ 7→ ζ2θ+ =⇒ θ3

+ 7→ θ3
+ =⇒ θ3

+ ∈ K(ζ, δ).
Writing θ− := α1 + ζ2α2 + ζα3, we evidently have σ(θ−) = ζθ−, and
so θ3

−, θ+θ− ∈ K(ζ, δ) as well.
We can use this to compute the roots αi of g. First observe that

θ+θ− = α2
1 + α2

2 + α2
3 + (ζ + ζ2)(α1α2 + α1α3 + α2α3) = λ2− e2 = 3p,
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while

θ3
+ + θ3

− = (α1 + ζα2 + ζ2α3)
3 + (α1 + ζα2 + ζ2α3)

3 + (α1 + α2 + α3︸ ︷︷ ︸
0

)3

= 3(α3
1 + α3

2 + α3
3) + 18α1α2α3

= 3λ3 + 18e3 = 9q + 18q = 27q.

Therefore

(y− θ3
+)(y− θ3

−) = y2 − (θ3
+ + θ3

−)y + (θ+θ−)
3 = y2 − 27qy + 27p3,

which by (I.K.7) and the quadratic formula yields

(I.K.9) θ3
± = 27

2 q± 3
2

√
−3∆ = 27

2 q± 3
2(2ζ + 1)δ.

Finally, solving the linear system
α1 + α2 + α3 = 0

α1 + ζα2 + ζ2α3 = θ+

α1 + ζ2α2 + ζα3 = θ−

for the roots gives (up to reordering)
(I.K.10)

α1 = 1
3(θ+ + θ−), α2 = 1

3(ζ
2θ+ + ζθ−), α3 = 1

3(ζθ+ + ζ2θ−),

which together with (I.K.9) and (I.K.7) constitute Cardano’s formulas,
published in 1545. In fact, Cardano’s book also contained a method
for solving quartics by radicals.

Quartics. Continuing to assume char(K) 6= 2, 3, consider f (x) =
x4 + a3x3 + a2x2 + a1x + a0, and again make a linear substitution
x = y − a3

4 to replace this by g(y) = y4 + py2 + qy + r. Assuming
f irreducible ( =⇒ ∆ 6= 0), we know that G := GalK( f ) is a transi-
tive subgroup of S4, hence limited to the possibilities S4, A4, D4, V4,
and Z4. We see right away from Theorem I.K.3 that

• if δ ∈ K, then G ∼= A4 or V4, while
• if δ /∈ K, then G ∼= S4, D4 or Z4.

To go further, we need to consider the cubic resolvent of g and its
splitting field, starting with the latter.
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Recall that V4 = {1, (12)(34), (13)(24), (14)(23)} is a normal
subgroup of S4, so that H := V4 ∩ G E G. (In fact H = V4 un-
less G = 〈(1234)〉 ∼= Z4, in which case H = Z2.) Inside our splitting
field L for g, consider then M := Inv(H), with Aut(L/M) ∼= H ≤ V4

and

Aut(M/K) ∼= G/H ∼= G/(G ∩V4) ∼= GV4/V4 ≤ S4/V4
∼= S3,

which certainly suggests that M/K should be the SFE of a cubic poly-
nomial.

To determine M, write g(y) = ∏4
i=1(y− αi), with ∑i αi = 0. Tak-

ing βij := αi + αj, their squares

β2
12 = −β12β34, β2

13 = −β13β24, and β2
14 = −β14β23

are evidently fixed by V4, and so belong to M. Conversely, if σ is a
permutation of roots fixing these squares, then σ ∈ V4. So

Aut(L/M) ≤ Aut(L/K(β2
12, β2

13, β2
14)) ≤ H = Aut(L/M)

forces both ≤’s to be =’s, and M = K(β2
12, β2

13, β2
14).

One then computes
β2

12 + β2
13 + β2

14 = −2∑i<jαiαj = −2p,

β2
12β2

13 + β2
12β2

14 + β2
13β2

14 = p2 − 4r,

β12β13β14 = −q ( =⇒ β2
12β2

13β2
14 = q2),

which obviously belong to K, making M the splitting field of the
cubic resolvent

(I.K.11) F(z) := z3 + 2pz2 + (p2 − 4r)z− q2 ∈ K[x]

of g. By Cardano’s formula, we can construct the roots β2
12, β2

13, β2
14

of F by taking square and cube roots. Then we obtain β12, β13, β14 by
taking further square roots (signs compatible with β12β13β14 = −q).
Adjoining these to M yields L, since we now obtain the roots{

α1 = 1
2(β12 + β13 + β14), α2 = 1

2(β12 − β13 − β14),

α3 = 1
2(−β12 + β13 − β14), α4 = 1

2(−β12 − β13 + β14)
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of g by “solving the linear system” as before. Incorporating the cube
root of unity ζ, we therefore have the desired root tower: adjoin ζ to
K, then the square root of the discriminant of (I.K.11), then the cubic
radical θ for (I.K.11), which gets us to M(ζ); finally, adjoining the
square roots β1j of elements of M(ζ) gets us to L(ζ).

Going back to the possibilities for the Galois group G of g (and
f ), we have the following table36

G G/H H g irr/M? F irr/K?
√

∆ ∈ K? SFEs of F & g

S4 S3 V4 Y Y N K 6 M 4 L

A4 Z3 V4 Y Y Y K 3 M 4 L

D4 Z2 V4 Y N N K 2 M 4 L

V4 {1} V4 Y N Y K 1 M 4 L

Z4 Z2 Z2 N N N K 2 M 2 L

which leads for instance to the decision diagram

(I.K.12) A4
F irr/K?

Y

N V4√
∆ ∈ K?

N

Y

S4
F irr/K?

Y

N

D4
g irr/M?

Y

N Z4

However, one can often avoid computing ∆ by finding the roots of
the resolvent and/or g and making use of the right-hand column of
the table instead.

I.K.13. EXAMPLE. Consider f (x) = x4 + 4x + 2 (= g(x)) over
K = Q. This is irreducible by Eisenstein. Computing ∆ = 256r3 −
27q4 = 162(23 − 33), we find that

√
∆ /∈ Q. The resolvent is F(z) =

36In order to make effective use of this, we need to know the discriminant. One
can show that ∆ is given by 256r3− 128p2r2 + 144pq2r− 27q4 + 16p4r− 4p3q2. The
standard method (for any monic polynomial) is to compute the resultant of g and
g′, which is a (in this case 7× 7) determinant constructed from coefficients of the
two polynomials.
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z3 − 8z − 16, which is “equivalent” to 1
8 F(2z) = z3 − 2z − 2, hence

irreducible (again by Eisenstein). So the Galois group is S4.

For practice, you might try to find G for x4− 2x− 1, x4 + 4x2 + 2,
and x4 − 10x2 + 4.


