82 I. GALOIS THEORY
I.K. Discriminants, cubics, and quartics

We now embark on the systematic computation of Galois groups
for specific polynomials, starting with low degree. Suppose that
char(K) # 2, and let f € K[x] be monic of degree n, with splitting
field L and Galois group G := Galg(f) := Aut(L/K). Letay, ..., ay
denote the roots Ry C L (with possible repetitions), and recall from
1.G.17 that G acts transitively on Ry <= f is irreducible.

LK.1. DEFINITION. The discriminant of f is A := 62, where

6:= ] (wi—wj) € L

1<i<j<n

Note that 6 depends on a choice of ordering of the «;, but A does not.

If f is separable, then the «; are distinct, L /K is Galois, and A is
G-invariant (since G just permutes the roots). Otherwise, there is a
repeated root and A is obviously 0. So we see that

(LK.2) A €K

always holds. In fact, there are formulas (for any 7) for A in terms of
(polynomials in) the coefficients of f. So computationally speaking,
A actually precedes 4; and for this reason I will sometimes write v/A
instead of 4.

LK.3. THEOREM. (i) A =0 = f has a repeated root in L.
(i) A # 0and VA € K = G < U,
(iii) A # 0and VA ¢ K = G £ 2, and K(6) = Inv(G N 2Ay).

PROOF. If A # 0, then f is separable and L/K Galois. Consider
o € G < G, as a permutation of the roots: by (slight) abuse of nota-
tion, o(a;) = ay(;). Since the number of inversions® in a permutation

has the same parity as the number of transpositions,
(LK.4) 0(8) = ITij(ao () — o(j)) = sgn(c)0.

HThese are pairs (i, ) for which i < jbut (i) > o(j). To see the equality mod 2,
note that each transposition changes the number of inversions by an odd number.
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If 6 € K(= Inv(G)), then ¢ is G-invariant and (I.K.4) forces G <
ker(sgn) = 2.

On the other hand, if § ¢ K, then it isn’t G-invariant and (again
by (LK.4)) some ¢ € G has sgn(c) = —1. By (LK.2), ms = x> — A
and [K(0):K] = 2. Applying the FTGT to [G:GN2A,] = 2 yields
[Inv(G NA,):K] = 2; since 6 € Inv(GN2A,) (1.LK4) again), we get
K(5) = Inv(G N2Ay). O

Clearly it would be useful to be able to compute A. Consider
the n x n Vandermonde matrix M = (a' !

i ij=t...- This clearly has
det(M) = §; and so

(LK5) A =det(M'M) =det((Aisj—2)ij1...), A= Lj_1ak,

where the Ay are the Newton symmetric polynomials s;(a) in the
roots. Recalling that these may be expressed in terms of the elemen-
tary symmetric polynomials e;(a), which (up to (—1)F) are just the
coefficients of f, we see a route to general formulas.

LK.6. EXAMPLE. Let’s start with quadratics: f(x) = x? + a;x +

ag = (x — ocl)(x - 062). Then Ay = a1 +ar = —a; and Ay, = (X% —|—D€% =
(a1 + a2)? — 2014 = a3 — 2ay. The resulting discriminant
2 —m 2 2 2
A= = 2a7 —4ag — a7 = a7 —4a
—ay a3 — 2ag ! R 0

should look pretty familiar.
Cubics.

Turning to f(x) = x3 + ax? + a;x + ap, the linear substitution
x =y — tap yields

8(y) =y —py —q, with p = 3a3 —ay and q = 30102 — 3,03 — ao.

Since this merely translates all roots by %, it doesn’t affect the dis-
criminant, the splitting field, or the Galois group, but greatly simpli-
fies the computation.

Now write Ax and e for the (Newton and elementary) symmetric
polynomials in the roots a; of g; we have e = a1 +ax +a3 = 0,
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e = —p and e3 = g. By Newton’s identities we have
AM=e =0,
Ay = €3 —2ey = 2p,
A3z = e‘;’ — 3ejep +3e3 = 3g, and
Ag = e‘l" — 46%62 + 4eqe3 + Ze% = 2;92,

which yield the discriminant

3 .0 2p
(LK.7) A=|0 2p 3q|=4p’—274%
2p 3q 2p°

Assuming that char(K) # 2,3, f is separable (cf. (L.LE.6)); and
assuming f irreducible, A # 0. Moreover, G acts transitively, so is
either 23 = Z3 or G3. By Theorem 1.K.3, we have

(LK.8) G273 «— (6=)VAcK;

and in either case, [L:K(6)] = 3 and Aut(L/K(9)) = Zs.

To enclose L/K in a root tower, first adjoin a cube root of unity ¢
to K, followed by J; note that L({) /K is a SFE (for (x® — 1)g(x)) hence
Galois. The tower of extensions K C K(§) C L C L({) evidently
has total degree 3, 6, or 12; this forces L({)/K(6,{) to be of order 3
hence cyclic (with generator ¢). By 1.J.19, L({) = K(J,,0) where
0% € K(8,); and so our root tower is

K € K({) € K(Z,6) C K((,4,8) = L(0).

In fact, the proof of 1.].19 gives a formula for the cube root: we must
take 0 = 01 := & + {ap + (%3, since then applying o sends a; —
ay — a3 a; = 04— 20, = 65— 05 = 63 € K((,9).
Writing 6 := a1 + {%as + {az, we evidently have o(6_) = {0, and
s00%,0,0_ € K(,9) as well.

We can use this to compute the roots «; of g. First observe that

0+0_ = af + a3+ a3 + (+ %) (w2 + ajas + apas) = Ay —ex = 3p,
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while

0% + 6% = (a1 + oz + TP3)° 4 (a1 + Gz + (%a3)® + (g + ap + a3)°
0
= 3(af + a3 + a3) + 1814003
= 3A3 +18e3 = 9q + 189 = 274.

Therefore

(y—63)(y—62) =y — (0% + 62 )y + (6+0-)° = y* — 27qy +27p°,
which by (I.LK.7) and the quadratic formula yields

(LK.9) 03 =Zq+3vV-3A=Zq+3(20 +1)0.

Finally, solving the linear system

01 +ar+az3 =0
a1+ Capy + Ta3 = 04
a1+ Pao +fag = 6

for the roots gives (up to reordering)
(LK. 10)

=304 46-), ap=13(0%0,+76-), az=3(C0+C%0-),

which together with (I.K.9) and (I.K.7) constitute Cardano’s formulas,
published in 1545. In fact, Cardano’s book also contained a method
for solving quartics by radicals.

Quartics. Continuing to assume char(K) # 2,3, consider f(x) =
x* + a3x3 + apx? + ayx + ag, and again make a linear substitution
x =y — 2 to replace this by ¢(y) = y*+ py* + qy + r. Assuming
f 1rreduc1ble (= A #0), we know that G := Galg(f) is a transi-
tive subgroup of &4, hence limited to the possibilities Gy, 24, D4, V4,
and Z4. We see right away from Theorem 1.K.3 that

e if § € K, then G = 4 or V,, while

e if § ¢ K, then G = &y, D4 or Z4.

To go further, we need to consider the cubic resolvent of ¢ and its
splitting field, starting with the latter.
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Recall that V, = {1, (12)(34), (13)(24), (14)(23)} is a normal
subgroup of &4, so that H := V; NG < G. (In fact H = V4 un-
less G = ((1234)) = Z,4, in which case H = Z;.) Inside our splitting
field L for g, consider then M := Inv(H), with Aut(L/M) = H <V,
and

Aut(M/K) 2 G/HX=G/(GNVy) XGVy/Vy < 8y/Vy = Gs,

which certainly suggests that M /K should be the SFE of a cubic poly-
nomial.

To determine M, write g(y) = [Tt; (v — &;), with ¥; a; = 0. Tak-
ing pjj := a; + «;, their squares

Bl = —P12Bas, PBiz = —P13Pas, and By = —PuaPos

are evidently fixed by V4, and so belong to M. Conversely, if ¢ is a
permutation of roots fixing these squares, then o € Vj. So

Aut(L/M) < Aut(L/K(T,, B3 f14)) < H = Aut(L/M)

forces both <’s to be =’s, and M = K(B3,, B35, f3,)-
One then computes
B+ Bl + By = —2) i = —2p,
B1aBls + BaBis + BlaBis = p° — 47,
Bi2Br3fia = —q (= PhLB1BL =),
which obviously belong to K, making M the splitting field of the
cubic resolvent
(LK.11) F(z) := 22 +2pz® + (p* — 4r)z — g* € K[x]
of g. By Cardano’s formula, we can construct the roots ,8%2, %3, %4
of F by taking square and cube roots. Then we obtain B15, B13, B1a by

taking further square roots (signs compatible with B12813814 = —¢).
Adjoining these to M yields L, since we now obtain the roots

{061 =3(Br2+ P13+ Bus), a2 =3(B12— P13 — P1a),
a3 = 5(—P12+ P13 — B14), aa = 2(—P12 — B13 + P14)
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of ¢ by “solving the linear system” as before. Incorporating the cube
root of unity {, we therefore have the desired root tower: adjoin { to
K, then the square root of the discriminant of (I.K.11), then the cubic
radical 0 for (I.LK.11), which gets us to M({); finally, adjoining the
square roots B1; of elements of M({) gets us to L({).

Going back to the possibilities for the Galois group G of g (and
f), we have the following table®

G |G/H| H |girr/M? | Firr/K? | /A € K? | SFEsof F & g
Gyl G5 |V Y Y N KSmiL
A | Zs |V, Y Y Y K2MmiL
Dy| Z, |V, Y N N K2MEL
Vil {1} | v Y N Y K=MEL
Z,| 7, |Z,| N N N K2M21L
which leads for instance to the decision diagram
(LK.12) Y Ay
Firr/K? —
N W
VA € K?
Y Sy
Firr/K? ( Y D,
N  girr/M?
N\ Zy

However, one can often avoid computing A by finding the roots of
the resolvent and/or ¢ and making use of the right-hand column of
the table instead.

LK.13. EXAMPLE. Consider f(x) = x* +4x +2(= g¢(x)) over
K = Q. This is irreducible by Eisenstein. Computing A = 2567 —
27q* = 16*(2% — 3%), we find that v/A ¢ Q. The resolvent is F(z) =

361n order to make effective use of this, we need to know the discriminant. One
can show that A is given by 25613 — 128p%r? + 144pq*r — 27q* + 16p*r — 4p3q®. The
standard method (for any monic polynomial) is to compute the resultant of ¢ and
¢’, which is a (in this case 7 x 7) determinant constructed from coefficients of the
two polynomials.
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3

z% — 8z — 16, which is “equivalent” to §F(2z) = z3 — 2z — 2, hence

irreducible (again by Eisenstein). So the Galois group is &;.

For practice, you might try to find G for x* —2x — 1, x* + 4x% 4 2,
and x* — 10x? + 4.



