I.K. Discriminants, cubics, and quartics

We now embark on the systematic computation of Galois groups for specific polynomials, starting with low degree. Suppose that $\operatorname{char}(K) \neq 2$, and let $f \in K[x]$ be monic of degree n, with splitting field L and Galois group $G:=\operatorname{Gal}_{K}(f):=\operatorname{Aut}(L / K)$. Let $\alpha_{1}, \ldots, \alpha_{n}$ denote the roots $\mathcal{R}_{f} \subset L$ (with possible repetitions), and recall from I.G. 17 that G acts transitively on $\mathcal{R}_{f} \Longleftrightarrow f$ is irreducible.
I.K.1. Definition. The discriminant of f is $\Delta:=\delta^{2}$, where

$$
\delta:=\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right) \in L
$$

Note that δ depends on a choice of ordering of the α_{i}, but Δ does not.
If f is separable, then the α_{i} are distinct, L / K is Galois, and Δ is G-invariant (since G just permutes the roots). Otherwise, there is a repeated root and Δ is obviously 0 . So we see that

$$
\begin{equation*}
\Delta \in K \tag{I.K.2}
\end{equation*}
$$

always holds. In fact, there are formulas (for any n) for Δ in terms of (polynomials in) the coefficients of f. So computationally speaking, Δ actually precedes δ; and for this reason I will sometimes write $\sqrt{\Delta}$ instead of δ.
I.K.3. THEOREM. (i) $\Delta=0 \Longrightarrow f$ has a repeated root in L.
(ii) $\Delta \neq 0$ and $\sqrt{\Delta} \in K \Longrightarrow G \leq \mathfrak{A}_{n}$.
(iii) $\Delta \neq 0$ and $\sqrt{\Delta} \notin K \Longrightarrow G \not \approx \mathfrak{A}_{n}$ and $K(\delta)=\operatorname{Inv}\left(G \cap \mathfrak{A}_{n}\right)$.

Proof. If $\Delta \neq 0$, then f is separable and L / K Galois. Consider $\sigma \in G \leq \mathfrak{S}_{n}$ as a permutation of the roots: by (slight) abuse of notation, $\sigma\left(\alpha_{i}\right)=\alpha_{\sigma(i)}$. Since the number of inversions ${ }^{35}$ in a permutation has the same parity as the number of transpositions,

$$
\begin{equation*}
\sigma(\delta)=\prod_{i<j}\left(\alpha_{\sigma(i)}-\alpha_{\sigma(j)}\right)=\operatorname{sgn}(\sigma) \delta \tag{I.K.4}
\end{equation*}
$$

${ }^{35}$ These are pairs (i, j) for which $i<j$ but $\sigma(i)>\sigma(j)$. To see the equality mod 2 , note that each transposition changes the number of inversions by an odd number.

If $\delta \in K(=\operatorname{Inv}(G))$, then δ is G-invariant and (I.K.4) forces $G \leq$ $\operatorname{ker}(\mathrm{sgn})=\mathfrak{A}_{n}$.

On the other hand, if $\delta \notin K$, then it isn't G-invariant and (again by (I.K.4)) some $\sigma \in G$ has $\operatorname{sgn}(\sigma)=-1$. By (I.K.2), $m_{\delta}=x^{2}-\Delta$ and $[K(\delta): K]=2$. Applying the FTGT to $\left[G: G \cap \mathfrak{A}_{n}\right]=2$ yields $\left[\operatorname{Inv}\left(G \cap \mathfrak{A}_{n}\right): K\right]=2$; since $\delta \in \operatorname{Inv}\left(G \cap \mathfrak{A}_{n}\right)$ ((I.K.4) again), we get $K(\delta)=\operatorname{Inv}\left(G \cap \mathfrak{A}_{n}\right)$.

Clearly it would be useful to be able to compute Δ. Consider the $n \times n$ Vandermonde matrix $M=\left(\alpha_{j}^{i-1}\right)_{i, j,=1, \ldots, n}$. This clearly has $\operatorname{det}(M)=\delta ;$ and so

$$
\begin{equation*}
\Delta=\operatorname{det}\left(M^{t} M\right)=\operatorname{det}\left(\left(\lambda_{i+j-2}\right)_{i, j,=1, \ldots, n}\right), \quad \lambda_{k}:=\sum_{\ell=1}^{n} \alpha_{\ell}^{k} \tag{I.K.5}
\end{equation*}
$$

where the λ_{k} are the Newton symmetric polynomials $s_{k}(\underline{\alpha})$ in the roots. Recalling that these may be expressed in terms of the elementary symmetric polynomials $e_{k}(\underline{\alpha})$, which (up to $(-1)^{k}$) are just the coefficients of f, we see a route to general formulas.
I.K.6. EXAMPLE. Let's start with quadratics: $f(x)=x^{2}+a_{1} x+$ $a_{0}=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)$. Then $\lambda_{1}=\alpha_{1}+\alpha_{2}=-a_{1}$ and $\lambda_{2}=\alpha_{1}^{2}+\alpha_{2}^{2}=$ $\left(\alpha_{1}+\alpha_{2}\right)^{2}-2 \alpha_{1} \alpha_{2}=a_{1}^{2}-2 a_{0}$. The resulting discriminant

$$
\Delta=\left|\begin{array}{cc}
2 & -a_{1} \\
-a_{1} & a_{1}^{2}-2 a_{0}
\end{array}\right|=2 a_{1}^{2}-4 a_{0}-a_{1}^{2}=a_{1}^{2}-4 a_{0}
$$

should look pretty familiar.

Cubics.

Turning to $f(x)=x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$, the linear substitution $x=y-\frac{1}{3} a_{2}$ yields
$g(y)=y^{3}-p y-q$, with $p=\frac{1}{3} a_{2}^{2}-a_{1}$ and $q=\frac{1}{3} a_{1} a_{2}-\frac{2}{27} a_{2}^{3}-a_{0}$.
Since this merely translates all roots by $\frac{a_{2}}{3}$, it doesn't affect the discriminant, the splitting field, or the Galois group, but greatly simplifies the computation.

Now write λ_{k} and e_{k} for the (Newton and elementary) symmetric polynomials in the roots α_{i} of g; we have $e_{1}=\alpha_{1}+\alpha_{2}+\alpha_{3}=0$,
$e_{2}=-p$ and $e_{3}=q$. By Newton's identities we have

$$
\begin{aligned}
& \lambda_{1}=e_{1}=0 \\
& \lambda_{2}=e_{1}^{2}-2 e_{2}=2 p \\
& \lambda_{3}=e_{1}^{3}-3 e_{1} e_{2}+3 e_{3}=3 q, \text { and } \\
& \lambda_{4}=e_{1}^{4}-4 e_{1}^{2} e_{2}+4 e_{1} e_{3}+2 e_{2}^{2}=2 p^{2}
\end{aligned}
$$

which yield the discriminant

$$
\Delta=\left|\begin{array}{ccc}
3 & 0 & 2 p \tag{I.K.7}\\
0 & 2 p & 3 q \\
2 p & 3 q & 2 p^{2}
\end{array}\right|=4 p^{3}-27 q^{2}
$$

Assuming that char $(K) \neq 2,3, f$ is separable (cf. (I.E.6)); and assuming f irreducible, $\Delta \neq 0$. Moreover, G acts transitively, so is either $\mathfrak{A}_{3} \cong \mathbb{Z}_{3}$ or \mathfrak{S}_{3}. By Theorem I.K.3, we have

$$
\begin{equation*}
G \cong \mathbb{Z}_{3} \Longleftrightarrow(\delta=) \sqrt{\Delta} \in K \tag{I.K.8}
\end{equation*}
$$

and in either case, $[L: K(\delta)]=3$ and $\operatorname{Aut}(L / K(\delta)) \cong \mathbb{Z}_{3}$.
To enclose L / K in a root tower, first adjoin a cube root of unity ζ to K, followed by δ; note that $L(\zeta) / K$ is a SFE (for $\left.\left(x^{3}-1\right) g(x)\right)$ hence Galois. The tower of extensions $K \subset K(\delta) \subset L \subset L(\zeta)$ evidently has total degree 3,6, or 12; this forces $L(\zeta) / K(\delta, \zeta)$ to be of order 3 hence cyclic (with generator σ). By I.J.19, $L(\zeta)=K(\delta, \zeta, \theta)$ where $\theta^{3} \in K(\delta, \zeta)$; and so our root tower is

$$
K \subset K(\zeta) \subset K(\zeta, \delta) \subset K(\zeta, \delta, \theta)=L(\zeta)
$$

In fact, the proof of I.J. 19 gives a formula for the cube root: we must take $\theta=\theta_{+}:=\alpha_{1}+\zeta \alpha_{2}+\zeta^{2} \alpha_{3}$, since then applying σ sends $\alpha_{1} \mapsto$ $\alpha_{2} \mapsto \alpha_{3} \mapsto \alpha_{1} \Longrightarrow \theta_{+} \mapsto \zeta^{2} \theta_{+} \Longrightarrow \theta_{+}^{3} \mapsto \theta_{+}^{3} \Longrightarrow \theta_{+}^{3} \in K(\zeta, \delta)$. Writing $\theta_{-}:=\alpha_{1}+\zeta^{2} \alpha_{2}+\zeta \alpha_{3}$, we evidently have $\sigma\left(\theta_{-}\right)=\zeta \theta_{-}$, and so $\theta_{-}^{3}, \theta_{+} \theta_{-} \in K(\zeta, \delta)$ as well.

We can use this to compute the roots α_{i} of g. First observe that

$$
\theta_{+} \theta_{-}=\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}+\left(\zeta+\zeta^{2}\right)\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}\right)=\lambda_{2}-e_{2}=3 p,
$$

while

$$
\begin{aligned}
\theta_{+}^{3}+\theta_{-}^{3} & =\left(\alpha_{1}+\zeta \alpha_{2}+\zeta^{2} \alpha_{3}\right)^{3}+\left(\alpha_{1}+\zeta \alpha_{2}+\zeta^{2} \alpha_{3}\right)^{3}+(\underbrace{\alpha_{1}+\alpha_{2}+\alpha_{3}}_{0})^{3} \\
& =3\left(\alpha_{1}^{3}+\alpha_{2}^{3}+\alpha_{3}^{3}\right)+18 \alpha_{1} \alpha_{2} \alpha_{3} \\
& =3 \lambda_{3}+18 e_{3}=9 q+18 q=27 q .
\end{aligned}
$$

Therefore

$$
\left(y-\theta_{+}^{3}\right)\left(y-\theta_{-}^{3}\right)=y^{2}-\left(\theta_{+}^{3}+\theta_{-}^{3}\right) y+\left(\theta_{+} \theta_{-}\right)^{3}=y^{2}-27 q y+27 p^{3}
$$

which by (I.K.7) and the quadratic formula yields

$$
\begin{equation*}
\theta_{ \pm}^{3}=\frac{27}{2} q \pm \frac{3}{2} \sqrt{-3 \Delta}=\frac{27}{2} q \pm \frac{3}{2}(2 \zeta+1) \delta . \tag{I.K.9}
\end{equation*}
$$

Finally, solving the linear system

$$
\left\{\begin{aligned}
\alpha_{1}+\alpha_{2}+\alpha_{3} & =0 \\
\alpha_{1}+\zeta \alpha_{2}+\zeta^{2} \alpha_{3} & =\theta_{+} \\
\alpha_{1}+\zeta^{2} \alpha_{2}+\zeta \alpha_{3} & =\theta_{-}
\end{aligned}\right.
$$

for the roots gives (up to reordering)
(I.K.10)

$$
\alpha_{1}=\frac{1}{3}\left(\theta_{+}+\theta_{-}\right), \quad \alpha_{2}=\frac{1}{3}\left(\zeta^{2} \theta_{+}+\zeta \theta_{-}\right), \quad \alpha_{3}=\frac{1}{3}\left(\zeta \theta_{+}+\zeta^{2} \theta_{-}\right)
$$

which together with (I.K.9) and (I.K.7) constitute Cardano's formulas, published in 1545. In fact, Cardano's book also contained a method for solving quartics by radicals.

Quartics. Continuing to assume char $(K) \neq 2,3$, consider $f(x)=$ $x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$, and again make a linear substitution $x=y-\frac{a_{3}}{4}$ to replace this by $g(y)=y^{4}+p y^{2}+q y+r$. Assuming f irreducible $(\Longrightarrow \Delta \neq 0)$, we know that $G:=\operatorname{Gal}_{K}(f)$ is a transitive subgroup of \mathfrak{S}_{4}, hence limited to the possibilities $\mathfrak{S}_{4}, \mathfrak{A}_{4}, D_{4}, V_{4}$, and \mathbb{Z}_{4}. We see right away from Theorem I.K. 3 that

- if $\delta \in K$, then $G \cong \mathfrak{A}_{4}$ or V_{4}, while
- if $\delta \notin K$, then $G \cong \mathfrak{S}_{4}, D_{4}$ or \mathbb{Z}_{4}.

To go further, we need to consider the cubic resolvent of g and its splitting field, starting with the latter.

Recall that $V_{4}=\{\mathbf{1},(12)(34),(13)(24),(14)(23)\}$ is a normal subgroup of \mathfrak{S}_{4}, so that $H:=V_{4} \cap G \unlhd G$. (In fact $H=V_{4}$ unless $G=\langle(1234)\rangle \cong \mathbb{Z}_{4}$, in which case $H=\mathbb{Z}_{2}$.) Inside our splitting field L for g, consider then $M:=\operatorname{Inv}(H)$, with $\operatorname{Aut}(L / M) \cong H \leq V_{4}$ and

$$
\operatorname{Aut}(M / K) \cong G / H \cong G /\left(G \cap V_{4}\right) \cong G V_{4} / V_{4} \leq \mathfrak{S}_{4} / V_{4} \cong \mathfrak{S}_{3}
$$

which certainly suggests that M / K should be the SFE of a cubic polynomial.

To determine M, write $g(y)=\prod_{i=1}^{4}\left(y-\alpha_{i}\right)$, with $\sum_{i} \alpha_{i}=0$. Taking $\beta_{i j}:=\alpha_{i}+\alpha_{j}$, their squares

$$
\beta_{12}^{2}=-\beta_{12} \beta_{34}, \quad \beta_{13}^{2}=-\beta_{13} \beta_{24}, \text { and } \beta_{14}^{2}=-\beta_{14} \beta_{23}
$$

are evidently fixed by V_{4}, and so belong to M. Conversely, if σ is a permutation of roots fixing these squares, then $\sigma \in V_{4}$. So

$$
\operatorname{Aut}(L / M) \leq \operatorname{Aut}\left(L / K\left(\beta_{12}^{2}, \beta_{13}^{2}, \beta_{14}^{2}\right)\right) \leq H=\operatorname{Aut}(L / M)
$$

forces both \leq 's to be $=$'s, and $M=K\left(\beta_{12}^{2}, \beta_{13}^{2}, \beta_{14}^{2}\right)$.
One then computes

$$
\left\{\begin{array}{l}
\beta_{12}^{2}+\beta_{13}^{2}+\beta_{14}^{2}=-2 \sum_{i<j} \alpha_{i} \alpha_{j}=-2 p \\
\beta_{12}^{2} \beta_{13}^{2}+\beta_{12}^{2} \beta_{14}^{2}+\beta_{13}^{2} \beta_{14}^{2}=p^{2}-4 r \\
\beta_{12} \beta_{13} \beta_{14}=-q\left(\Longrightarrow \beta_{12}^{2} \beta_{13}^{2} \beta_{14}^{2}=q^{2}\right)
\end{array}\right.
$$

which obviously belong to K, making M the splitting field of the cubic resolvent

$$
\begin{equation*}
F(z):=z^{3}+2 p z^{2}+\left(p^{2}-4 r\right) z-q^{2} \in K[x] \tag{I.K.11}
\end{equation*}
$$

of g. By Cardano's formula, we can construct the roots $\beta_{12}^{2}, \beta_{13}^{2}, \beta_{14}^{2}$ of F by taking square and cube roots. Then we obtain $\beta_{12}, \beta_{13}, \beta_{14}$ by taking further square roots (signs compatible with $\beta_{12} \beta_{13} \beta_{14}=-q$). Adjoining these to M yields L, since we now obtain the roots

$$
\begin{cases}\alpha_{1}=\frac{1}{2}\left(\beta_{12}+\beta_{13}+\beta_{14}\right), & \alpha_{2}=\frac{1}{2}\left(\beta_{12}-\beta_{13}-\beta_{14}\right) \\ \alpha_{3}=\frac{1}{2}\left(-\beta_{12}+\beta_{13}-\beta_{14}\right), & \alpha_{4}=\frac{1}{2}\left(-\beta_{12}-\beta_{13}+\beta_{14}\right)\end{cases}
$$

of g by "solving the linear system" as before. Incorporating the cube root of unity ζ, we therefore have the desired root tower: adjoin ζ to K, then the square root of the discriminant of (I.K.11), then the cubic radical θ for (I.K.11), which gets us to $M(\zeta)$; finally, adjoining the square roots $\beta_{1 j}$ of elements of $M(\zeta)$ gets us to $L(\zeta)$.

Going back to the possibilities for the Galois group G of g (and f), we have the following table ${ }^{36}$

G	G / H	H	$g \operatorname{irr} / M ?$	$F \mathrm{irr} / K ?$	$\sqrt{\Delta} \in K ?$	SFEs of $F \& g$
\mathfrak{S}_{4}	\mathfrak{S}_{3}	V_{4}	Y	Y	N	$K \underline{6} M \underline{4} L$
\mathfrak{A}_{4}	\mathbb{Z}_{3}	V_{4}	Y	Y	Y	$K \underline{3} M \frac{4}{4} L$
D_{4}	\mathbb{Z}_{2}	V_{4}	Y	N	N	$K \underline{2} M \underline{4} L$
V_{4}	$\{1\}$	V_{4}	Y	N	Y	$K \xlongequal{1} M \frac{4}{2} L$
\mathbb{Z}_{4}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	N	N	N	$K \underline{2} M \underline{2} L$

which leads for instance to the decision diagram

However, one can often avoid computing Δ by finding the roots of the resolvent and/or g and making use of the right-hand column of the table instead.
I.K.13. EXAMPLE. Consider $f(x)=x^{4}+4 x+2(=g(x))$ over $K=\mathbb{Q}$. This is irreducible by Eisenstein. Computing $\Delta=256 r^{3}-$ $27 q^{4}=16^{2}\left(2^{3}-3^{3}\right)$, we find that $\sqrt{\Delta} \notin \mathbb{Q}$. The resolvent is $F(z)=$

[^0]$z^{3}-8 z-16$, which is "equivalent" to $\frac{1}{8} F(2 z)=z^{3}-2 z-2$, hence irreducible (again by Eisenstein). So the Galois group is \mathfrak{S}_{4}.

For practice, you might try to find G for $x^{4}-2 x-1, x^{4}+4 x^{2}+2$, and $x^{4}-10 x^{2}+4$.

[^0]: ${ }^{36}$ In order to make effective use of this, we need to know the discriminant. One can show that Δ is given by $256 r^{3}-128 p^{2} r^{2}+144 p q^{2} r-27 q^{4}+16 p^{4} r-4 p^{3} q^{2}$. The standard method (for any monic polynomial) is to compute the resultant of g and g^{\prime}, which is a (in this case 7×7) determinant constructed from coefficients of the two polynomials.

