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I.L. Higher degree

We now turn to the calculation of Galois groups for polynomials
of arbitrary degree, starting with a “general” result — quite literally.
That is, we shall calculate the Galois group of the generic polynomial

(I.L.1) f (x) = xn − t1xn−1 + t2xn−2 − · · ·+ (−1)ntn ∈ K[x],

where K = F(t1, . . . , tn) is the fraction field of the polynomial ring
F[t1, . . . , tn] over some field F. We’ve already demonstrated that, for
n ≤ 4 and char(F) 6= 2, 3, this is solvable by radicals.

Let L/K be a splitting field extension for f , with G = GalK( f ) =
Aut(L/K). Over L, we have f (x) = ∏n

i=1(x− yi), with tj = ej({yi}),
and L = K(y1, . . . , yn) = F(y1, . . . , yn). We are now in the setting of
Theorem I.G.29 and its proof, which together with Galois’s Theorem
yields at once the

I.L.2. ABEL-RUFFINI THEOREM (Abel, 1824). The general equation
(I.L.1) of the nth degree is separable and irreducible in F(t1, . . . , tn)[x], with
Galois group Sn. Hence for char(F) = 0 and n ≥ 5, it is insoluble by
radicals.

Thus one way to get an “explicit” polynomial not solvable in rad-
icals over its “field of definition” K is to take n ≥ 5, replace the {ti}
in (I.L.1) by algebraically independent transcendentals37 {γi} ⊂ C,
and set K = Q({γi}). But this is not really different from the generic
polynomial — a harder problem is whether we can “specialize” the
{ti} to elements of F to get a polynomial in F[x] that still behaves
(over F[x]) like the generic polynomial does (over K[x]), in the sense
of being irreducible with Galois group Sn. For instance:

• for F = C, we can never do this, because C is algebraically closed!
• for F = R (and n > 2), again impossible!
• for F = Q, on the other hand, this was proved by Hilbert using his

“irreducibility theorem”, and we will give an explicit construction
of such polynomials below for n prime.

37We will say exactly what this means, how to generate them, and why
F(γ1, . . . , γn) ∼= F(t1, . . . , tn) when we discuss transcendental extensions.
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If you accept Hilbert’s result, then there exists (for each n) a Galois
extension L/Q with Aut(L/Q) ∼= Sn, and then every subgroup —
indeed, every finite group G — is realized as the Galois group of an
extension L/M of number fields. Taking the minimal polynomial µα

over M of a primitive element α ∈ L realizes G as the Galois group
GalM(µα).

A much more difficult problem is the question of whether any
finite group is the Galois group GalQ(g) of a polynomial over Q: this
is the celebrated inverse Galois problem. It turns out that any finite
abelian group A is a quotient group of some Z∗m, cf. I.L.21. Since
these latter groups arise as Aut(Q(ζm)/Q) in view of the discussion
of cyclotomic polynomials below, this realizes A as the Galois group
of an (abelian) extension of Q (and thus as the Galois group of the
minimal polynomial of a primitive element).

What about nonabelian groups? Hilbert showed that, in addition
to Sn, all alternating groups An are Galois groups/Q; and half a
century later, Shafarevich proved this for solvable groups. Currently
the inverse Galois problem is still open for (at least) some simple
groups of Lie type and one of the sporadic simple groups.

In the rest of this section we consider various approaches com-
puting Galois groups, including reducing a polynomial modulo a
prime, as well as methods specific to polynomials of prime degree,
and finally concluding with a treatment of cyclotomic polynomials
and applications thereof.

Polynomials of prime degree.

Let p ≥ 5 be prime. Recall the statement of I.G.20:38

Given f ∈ Q[x] irreducible of degree p,

with exactly p− 2 roots in R, we have GalQ( f ) ∼= Sp.

It remains to actually construct such polynomials for every p! The
construction that follows is attributed by [Jacobson] to Brauer.

38The reason for taking n = p was that the proof relied on the fact that transitive
subgroups of Sp containing a transposition are the whole group.
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So let n1 < n2 < · · · < np−2 be even integers, and m ≥ 1
2 ∑

p−2
`=1 n2

`

a positive even integer, and consider

(I.L.3) g(x) := (x2 + m)(x− n1) · · · (x− np−2) ∈ Q[x].

I.L.4. THEOREM. f := g− 2 is irreducible, with Galois group Sp.

PROOF. First note that g has p− 2 real roots, hence p− 3 relative
extrema (as a function on R), with half of these maxima. For ` ∈ Z

odd (which includes values between adjacent ni), evidently |g(`)| >
2; and so the relative extrema have | · | > 2 as well. It follows that
f has p−3

2 positive relative maxima between n1 and np−2, hence at
least p− 2 real roots, p− 3 of which lie in (n1, np−2).

Writing f = xp + a1xp−1 + · · ·+ ap = g− 2, we see that a1, . . . , ap

are even. Clearly 4 divides the constant term of g, so does not divide
ap; hence by Eisenstein, f is irreducible.

Factoring f (x) = ∏k
i=1(x− ri) in C[x] and comparing with (I.L.3),

we evidently have (from coefficients of xp−1 and xp−2) that

∑
p
i=1ri = ∑

p−2
`=1 n` and ∑i<jrirj = m + ∑k<`nkn`,

whence

∑ir2
i = (∑iri)

2 − 2∑i<jrirj = (∑`n`)
2 − 2(∑k<`nkn` + m)

= ∑`n2
` + 2∑k<`nkn` − 2∑k<`nkn` − 2m

= ∑`n2
` − 2m ≤ 0

by our assumption on m. As also ∏i ri = ap 6= 0, some ri must be
non-real, say r1; and since f ∈ Q[x], its conjugate r̄1 must also be a
root, say r2. Then r3, . . . , rp are the real roots, and I.G.20 completes
the proof. �

This yields a plethora of explicit polynomials over Q not solvable
by radicals. For instance, taking n1 = −2, n2 = 0, n3 = 2, and m = 4
produces f (x) = (x2 + 4)x(x2 − 4)− 2 = x5 − 16x− 2.

It is also of interest to classify the possible Galois groups for poly-
nomials which are solvable by radicals. For prime degree, there is a
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nice result. Let X denote Zp viewed as a set, and consider the groups

(I.L.5) Wp := {ωa,b | a ∈ Z∗p, b ∈ Zp} ≤ SX
∼= Sp

of affine transformations ωa,b(x) := ax + b of X. Writing σ := ω1,1,
the cyclic subgroup Zp ∼= 〈σ〉 E Wp is the kernel of the homomor-
phism Wp � Z∗p given by ωa,b 7→ a.

I.L.6. THEOREM. Let f ∈ Q[x] be an irreducible polynomial of degree
p, which is solvable by radicals. Then G := GalQ( f ) is isomorphic to a
subgroup of Wp containing Zp. More precisely, there is a (cyclic) subgroup
C ≤ Z∗p such that G ∼= {ωa,b | a ∈ C, b ∈ Zp}.39

PROOF. Since f is irreducible, we know (identifying X with R f )
that G is a transitive subgroup of SX. For any nontrivial normal
subgroup {1} 6= H E G, if we partition X into (disjoint) orbits H(x),
then I claim these orbits have the same order. Indeed, given x, y ∈
X, there exists (by transitivity) g ∈ G with y = gx; and then x′ ∈
H(x) =⇒ gx′ ∈ gH(x) = gHg−1(gx) = H(y). So gH(x) ⊂ H(y),
and conversely g−1H(y) = H(x), whence `g : H(x) → H(y) is a
bijection, and |H(x)| = |H(y)|. It follows that |H(x)| divides |X| =
p; and since |H(x)| 6= 1 (remember that |H| 6= 1), the only option is
to have H(x) = X. Thus H acts transitively on X.

We also know that G is solvable. Then it has a normal series
G = G0 . G1 . · · · . Gm−1 . Gm = {1} with cyclic quotients. By the
last paragraph, G1 is a transitive subgroup of SX; and by induction
we get that all the Gj (j < m) are transitive as well. Since Gm−1 is also
cyclic, it must be isomorphic to Zp, generated by a (cyclic) permuta-
tion of X. Reordering the identification of X with Zp if necessary, we
have Gm−1 = 〈σ〉 in the notation after (I.L.5).

Now suppose inductively that (under this identification) we have
Gj ≤ Wp (with j < m); obviously σ ∈ Gj. Given τ ∈ Gj−1, normality
yields τστ−1 ∈ Gj, whence τστ−1 is some ωa0,b0 of order p (like σ),
which must permute X cyclically. This means that x = ωa0,b0(x) =

39This can also be phrased in terms of short-exact sequences, namely 0 → Zp →
Wp → Z∗p → 1 and 0→ Zp → G → C → 1.
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a0x + b0 can have no solutions in Zp. But this is only possible if
a0 = 1 and b0 6= 0. So we have

τ(k) = τσ(k−1) = τστ−1(τ(k−1)) = ω1,b0(τ(k−1))

= τ(k−1) + b0 = · · · = τ(k−2) + 2b0 = · · ·

= τ(0) + kb0,

which means that τ = ωb0,τ(0). In particular, τ belongs to Wp; and
since τ ∈ Gj−1 was arbitrary, Gj−1 ≤ Wp. Downward induction on j
now yields that G ≤Wp. �

Reduction mod p.

Given a monic polynomial f ∈ Z[x] of degree n, we may consider
its images fp ∈ Zp[x] = Z[x]/(p). How might GalQ( f ) be related to
GalZp( fp)?

It is reasonable to assume that f has no repeated roots, since oth-
erwise it would just have a repeated irreducible factor. (As usual,
we shall write R for the roots of f in a splitting field.) As the dis-
criminant of a polynomial of degree n is a universal polynomial in
its coefficients (cf. (I.K.5)ff), the image of ∆ f ∈ Z under the reduc-
tion map Z� Zp is ∆ fp . So if p - ∆ f , we have ∆ fp 6= 0 in Zp, and fp

does not have multiple roots. Henceforth we shall work with such a
choice of p.

I.L.7. THEOREM. Suppose fp factors as a product of irreducibles of
degrees ni, ∑s

i=1 ni = n. Then GalQ( f ) (viewed as a subgroup of SR f )
contains a permutation σp ∈ SR f with cycle-structure n1, . . . , ns.

The idea of the proof is as follows:

• Let E/Q and Ep/Zp be SFEs for f resp. fp, and D := Z[R f ]. Fix a
ring homomorphism ψ : D → Ep = Zp[R fp ]. (We will show that
this exists below.)
• Then any other such homomorphism ψ′ will differ from ψ by an

element σ ∈ Aut(E/Q) on the right: that is, ψ′ = ψσ.
• Given π ∈ Aut(Ep/Zp), πψ : D → Ep is a ring homomorphism.

So there exists σπ ∈ Aut(E/Q) such that πψ = ψσπ. Sending π 7→
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σπ produces a group homomorphism Aut(Ep/Zp)→ Aut(E/Q),
from permutations ofR fp to permutations ofR f .
• |Ep| < ∞ =⇒ Aut(Ep/Zp) = 〈φp〉 is cyclic,40 acting transitively

on the root sets of the irreducible factors fp,i (of degree ni) of fp.
• σp := σφp has the same cycle-structure as φp.

To carry this plan out carefully, we begin with two lemmas. Given
a field F, an F-valued character of a monoid or group is simply a
(multiplicative) homomorphism into F∗ (sending 1 7→ 1).

I.L.8. LEMMA (Dedekind Independence Theorem). Distinct char-
acters of a monoid into a field are linearly independent over that field.

PROOF. Let H be a monoid, F a field, and χi : H → F∗ (1 ≤ i ≤
m) distinct characters. The claim is that if

(I.L.9) a1χ1(h) + · · ·+ anχm(h) = 0 (∀h ∈H)

then all ai = 0. For m = 1, this is clear since aχ(h) = 0 (∀h) =⇒
0 = aχ(1) = a.

Supposing inductively that the claim holds for m− 1 characters,
we can then assume all ai 6= 0. Since χ1 6= χm, they must disagree
on some a0. Plugging a0h into (I.L.9) yields

a1χ1(a0)χ1(h) + · · ·+ amχm(a0)χm(h) = 0,

while multiplying (I.L.9) by χm(a0) yields

a1χm(a0)χ1(h) + · · ·+ amχm(a0)χm(h) = 0.

Subtracting these two equations yields

(I.L.10)
m−1

∑
i=1

ai(χi(a0)− χm(a0))χi(h) = 0 (∀h ∈H).

Applying the inductive hypothesis, we get in particular that the coef-
ficient a1(χ1(a0)− χm(a0)) of χ1(h) in (I.L.10) is zero. Since χ1(a0) 6=
χm(a0), this gives a1 = 0, a contradiction. �

40See I.H.3. Recall that φ (here φp) denotes the Frobenius map (·) 7→ (·)p.
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(If this argument seemed familiar, it is because it generalizes a
paragraph from the proof of I.J.11.)

I.L.11. LEMMA. (i) A homomorphism ψ : D → Ep exists.

(ii) Any such homomorphism gives a bijectionR f
∼=→ R fp .

(iii) If ψ, ψ′ are two such, then ψ′ = ψσ for some σ ∈ Aut(E/Q).

PROOF. (i): WritingR f = {r1, . . . , rn}, we have f (x) = ∏n
i=1(x−

ri) in D[x]. The subset

D′ := Z〈re | e ∈ (N<n)
n〉 ⊂ D = Z[{r1, . . . , rn}]

contains rn
i , since this may be expressed as a Z-linear combination of

1, ri, r2
i , . . . , rn−1

i using f (ri) = 0. So riD′ ⊂ D′, whence D′ ⊂ D is a
subring containingR f , hence equals D. In other words, D is finitely
generated as a Z-module; and it is also free (since char(E) = 0).
By the structure theorem, we have D = Zu1 ⊕ · · · ⊕ZuN for some
uj ∈ D. That is, there is no Z-linear relation on the {ui}, hence no
Q-linear relation on them either, making Qu1⊕ · · · ⊕QuN a subring
of E.

But any “intermediate ring” R in an algebraic field extension L/K
is always a field. [This is simply because, for any α ∈ R, K[α] is
a finite-dimensional K-vector space; and multiplication µα : K[α] →
K[α] by α is an endomorphism thereof, which is injective because
K[α] is a domain. So it is also surjective, and there is a β ∈ K[α] ⊂ R
such that 1 = µα(β) = αβ.] So Qu1 ⊕ · · · ⊕QuN is a subfield of E
containing R f , and we conclude that E = Qu1 ⊕ · · · ⊕QuN, with
N = [E:Q].

Now consider the ideal pD = ⊕N
i=1Z(pui) ⊂ D; clearly |D/pD| =

pN. Let M ( D be a maximal ideal containing pD; then M/pD (
D/pD is also a maximal ideal, and D/M a field of characteristic
p with |D/M| = pm (m ≤ N). The quotient map ν : D � D/M
sends Z � Zp; and writing r̄i := ν(ri), we clearly have D/M =

Zp[r̄1, . . . , r̄n] (as the images of generators over Z become genera-
tors over Zp). The induced map D[x] � (D/M)[x] sends f (x) =

∏n
i=1(x − ri) to fp(x) = ∏n

i=1(x − r̄i). Evidently D/M is a splitting
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field for fp (why?), and composing D � D/M with the resulting

isomorphism D/M
∼=→ Ep yields a ψ, proving (i).

(ii): Let ψ : D → Ep be given. Since any ring homomorphism
sends 1 7→ 1, it must restrict to the quotient map Z� Zp. So fp(x) =

ψ( f (x)) = ∏n
i=1(x− ψ(ri)) =⇒ ψ mapsR f

∼=→ R fp .

(iii): Any σ ∈ GalQ( f ) = Aut(E/Q) restricts to a permutation (=
set automorphism) ofR f (= generators of D over Z) hence to a ring
automorphism of D. So ψσ := ψ ◦ σ ∈ Hom(D, Ep). Moreover, dis-
tinct σ, σ′ yield distinct ψσ and ψσ′; altogether, we get N = [E:Q] =

|GalQ( f )| distinct homomorphisms ψj = ψσj : D → Ep (1 ≤ j ≤ N)
in this way.

I claim that these are all of the homomorphisms from D to Ep.
Indeed, if ψN+1 is another, then the linear system

N+1

∑
j=1

xjψj(ui) = 0 (1 ≤ i ≤ N)

must have a nonzero solution x = (a1, . . . , aN+1) ∈ EN+1
p . Given any

y = ∑N
i=1 miui ∈ ⊕N

i=1Zui = D,

ψj(y) =
N

∑
i=1

m̄iψj(ui) =⇒

N+1

∑
j=1

ajψj(y) =
N

∑
i=1

N+1

∑
j=1

m̄iajψj(ui) =
N

∑
i=1

m̄i

N+1

∑
j=1

ajψj(ui) = 0.

But then we have N + 1 distinct characters D \ {0} → Ep with a
nontrivial linear dependency, contradicting I.L.17. �

We can now prove the main theorem on “reduction mod p” as a
means for computing Galois groups.

PROOF OF I.L.7. Consider the Frobenius (pth power) map φp ∈
Aut(Ep/Zp). If ψ ∈ Hom(D, Ep), then φpψ ∈ Hom(D, Ep). By
I.L.11(iii), there exists σφp ∈ GalQ( f ) such that φpψ = ψσφp . By
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I.L.11(ii), we therefore have

σφp |R f = (ψ|R f )
−1 ◦ (φp|R fp

) ◦ (ψ|R f ).

That is, ψ identifies the oribits of φp in R fp with the orbits of σφp in
R f , equating their cycle-structures. Since φp is the (cyclic) generator
of GalZp( fp), it acts transitively on the roots of each factor fp,i of f in
Zp[x], with eachR fp,i becoming an ni = deg( fp,i)-cycle for φp. �

Notice that the Theorem I.L.7 says nothing about f being irre-
ducible, so we don’t need to check that to apply it. It does say that f
and fp should not have a repeated root; but this is easier to check for
fp, and implies the same for f if it is true for any p.

I.L.12. EXAMPLE (Jacobson). Consider

f (x) = x6 + 26x5 + 21x4 + 12x3 − 37x2 − 29x− 15.

Reducing mod 2 yields f2(x) = x6 + x4 + x2 + x + 1, which has
f ′2 = 1 hence no multiple roots. In fact, it is also irreducible (brute
force), and so f is irreducible, and G := GalQ( f ) contains a 6-cycle
(in particular, is transitive).

Two more reductions yield f3(x) = x(x5 + x4− x+ 1) and f5(x) =
x(x − 1)(x + 1)(x + 2)(x2 + 2) (with irreducible factors shown), so
that G contains a 5-cycle and a transposition. In fact, a transitive
subgroup of Sn containing an (n − 1)-cycle and a transposition is
Sn (Exercise), and so G ∼= S6.

Evidently the technique is great for putting a “floor” under G, so
to speak; but when G is not Sn we need to use other techniques to
put a “ceiling” on G.

I.L.13. EXAMPLES. Using reduction modulo p, Theorem I.L.6, and
the other techniques at our disposal, we will now demonstrate that
all five of the (isomorphism classes of) transitive subgroups of S5 do
in fact occur as Galois groups of irreducible quintic polynomials/Q.
These were S5, A5, W5, D5, and Z5, with orders 120, 60, 20, 10, and
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5. (Of course, we have seen S5 in I.G.19 and once more as a conse-
quence of I.L.4; but we will use a simpler polynomial this time.) We
will write G for GalQ( f ) in each case.

(A) f (x) = x5 − x− 1: We know from I.H.10 that its reduction mod-
ulo 5 is irreducible, so f is irreducible and G contains a 5-cycle. On
the other hand, f2 = (x2 + x + 1)(x3 + x2 + 1) means that σ2 ∈ G has
cycle-structure (· · ·)(· ·) hence order 6. So 30

∣∣|G| =⇒ |G| = 30, 60,
or 120; but 30 was not in our list above and is actually not the order
of any subgroup of S5. So G is A5 or S5.

When n = 5, the formula from HW for the discriminant of a
polynomial of the form xn + px + q specializes to ∆ = 44p5 + 55q4.
For this f , we get ∆ = 55 − 44 = 2869 = 19 · 151. Since

√
∆ /∈ Q, by

I.K.3 we must have G ∼= S5.41

(B) f (x) = x5 + 20x + 16: One checks that f3 = x5 − x + 1 is irre-
ducible in Z3[x]; so f is irreducible and G has a 5-cycle σ3. Moreover,
f7 = x5 − x + 2 = (x + 2)(x + 3)(x3 + 2x2 − 2x− 2) yields a 3-cycle
σ7 ∈ G. So 15

∣∣|G| and we are again deciding between S5 and A5.
But the discriminant ∆ = 21656 is a rational square, so G ∼= A5.

(C) f (x) = x5 − 2: This is solvable by radicals: extend first to Q(ζ5),
then to E = Q(ζ5, 5

√
2). So by I.L.6, we have G ≤ W5. But since

E contains fields Q( 5
√

2) and Q(ζ5) with (coprime) degrees 4 and 5
over Q, 20

∣∣|G|. Conclude that G ∼= W5.

(D) f (x) = x5 − 5x + 12: The discriminant ∆ = 21256 is a square
( =⇒ G ∼= A5, D5, or Z5), and f3 = x(x2 + x − 1)(x2 − x − 1)
shows that σ3 has cycle-structure (··)(··)(·) ( =⇒ G 6∼= Z5). But how
to distinguish A5 and D5? If the answer is A5, then we should get a
3-cycle by reducing modulo another prime. But if the answer is D5,
how do we show this?

Well, if you could explicitly “solve f = ∏i(x − ri) by radicals”,
that would do it; but this appears to be quite hard. Another approach

41Alternatively to this paragraph, you can just observe that σ2 is an odd permuta-
tion.
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is this: define a polynomial g(x) := ∏i<j(x− (ri + rj)) of degree 10.
For f of the form x5 + px + q, you can show (by symmetric function
algebra) that g = x10 − 3px6 − 11qx5 − 4p2x2 + 4pqx− q2. Now the
idea is that if G ∼= A5, then this is irreducible; while if G ∼= D5, then
it splits into two irreducible quintics. (The reason is this: imagine
a pentagon with vertices at the roots ri; if it is D5 acting on these
roots, then the 5 edges are permuted and the 5 interior diagonals
are permuted, but edges and diagonals do not mingle.) And it so
happens that here42

g(x) = x10 + 15x6 − 132x5 − 100x2 − 240x− 144

= (x5 − 5x3 − 10x2 + 30x− 36)(x5 + 5x3 + 10x2 + 10x + 4).

So we get G ∼= D5.

(E) f (x) = x5 + x4 − 4x3 − 3x2 + 3x + 1: I am going to cheat a little,
since I know where this one came from: it is the minimal polyno-
mial of ζ11 + ζ̄11. Its splitting field is the “real subfield” of Q(ζ11),
invariant under complex conjugation.

There is a subtle issue here in general: if you have a subfield L
of C on which complex conjugation gives an automorphism ρ, the
order-2 subgroup 〈ρ〉 ≤ Aut(L/Q) may or may not be normal. For
cyclotomic fields, it’s normal, and so these fixed fields are splitting
fields for minimal polynomials of primitive elements in them. More-
over, since here E = Inv(〈ρ〉) ⊂ Q(ζ11), we have G = Aut(E/Q) =

Aut(Q(ζ11)/Q)/〈ρ〉 ∼= Z∗11/〈−1〉 ∼= Z10/〈5〉 ∼= Z5.

Cyclotomic polynomials.

So far we have only introduced the polynomials Φp for p prime;
we’ll now discuss the more general kind. We begin with the follow-
ing simple but useful43

42See Jensen and Yui, J. Number Theory 15 (1982), 347-375.
43We only need (ii) here. But when (i) holds, it implies (ii) (i.e. for R = K), so is
stronger. It was also used in the solution to HW 4 #5.
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I.L.14. PROPOSITION. (i) Let L/K be a field extension, and f , g ∈
K[x] monic. Then the monic gcd of f and g in L[x] belongs to K[x], and is
their monic gcd there.

(ii) Let R be a subring of a field L, and f , g ∈ R[x] monic, with g | f in
L[x]. Then g | f in R[x].

PROOF. (i) Write hK, hL for the 2 monic gcds. Both belong to L[x],
in which hL is a greatest common divisor; so hK | hL (in L[x]). On the
other hand, there exist F, G ∈ K[x] such that hK = F f + Gg, and then
hL | f , g =⇒ hL | hK (in L[x]). Since they are both monic, they are
equal.

(ii) Write f = ∑m+n
i=0 aixi, g = ∑n

j=0 bjxj, and h = f
g = ∑m

k=0 ckxk,
where ai, bj ∈ R and ck ∈ L, and am+n, bn, cm = 1. Assume (by
downward induction on `) that ck ∈ R for k > `. Then

c` = an+` − c`+1bn−1 − · · · − cmbn+`−m ∈ R

furnishes the inductive step. �

Let L = Q(ζm), and define the mth cyclotomic polynomial

(I.L.15) Φm(x) := ∏
1≤j≤m−1

gcd(j,m)=1

(x− ζ
j
m).

Its roots are the primitive mth roots of 1, and it belongs a priori to L[x].
But considering a handful of examples, e.g.

Φ1 = x− 1, Φ4 = x2 + 1, Φ6 = x2 − x + 1, Φ8 = x4 + 1,

Φ9 = x6 + x3 + 1, Φ10 = x4 − x3 + x2 − x + 1

they certainly appear to be nicer than that.
Indeed, as the mth roots of 1 comprise primitive dth roots of 1 for

the divisors d | m, we have in L[x]

(I.L.16) xm − 1 = ∏
d|m

Φd(x).
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Inductively assuming that the {Φd(x)}d<m belong to Z[x] (clear for
d = 1), and taking R = Z, f = xm − 1, and44 g = ∏d‖m Φd(x) in
I.L.14(ii), we conclude that

Φm(x) ∈ Z[x]

for all m. As for the Φp, we have more generally

I.L.17. THEOREM. Φm is irreducible in Q[x] for every m.

PROOF. Suppose Φm = f g, with f irreducible monic and both
factors of positive degree; by Gauss’s Lemma we may assume f , g ∈
Z[x]. Let ζ ∈ L be a root of f , and consider a prime p - m. Then ζ p is
a root of either f or g. I claim that ζ p is a root of f .

If it is a root of g, then ζ is a root of G(x) := g(xp), and f = mζ | G
yields G = f h in Z[x]. Reduce this mod p, writing Ḡ = f̄ h̄ in Zp[x];
since G(x) = g(xp) = g(x)

p
, we have f̄ h̄ = ḡp. Let q̄ | f̄ be an

irreducible factor; then q̄ | ḡp =⇒ q̄ | ḡ =⇒ q̄2 | f̄ ḡ =⇒ Φm

has a repeated root. This is impossible since the gcd of xm − 1 and
(xm − 1)′ = mxm−1 is 1. Claim is proved.

Now let η be any root of f , and θ any root of g. Both are primitive
mth roots of 1; and so θ = ηr for some r coprime to m, which we may
write in the form r = p1 · · · pk, for some primes pi - m. Iterating the
above argument, θ = ((ηp1)p2...)pk must be a root of f . But then Φm

has a repeated root, a contradiction. �

By I.L.17, Φm is the minimal polynomial of ζm over Q. Writing
m = ∏s

i=1 pei
i , with {pi} distinct primes, the degree of the SFE is

therefore

(I.L.18) [Q(ζm):Q] = deg(Φm) = ϕ(m) = ∏s
i=1pei−1

i (pi − 1).

Moreover, the roots Rxm−1 form a copy of Zm; and so by I.G.26 to-
gether with the transitivity of the action onRΦm implied by I.L.17,
(I.L.19)

GalQ(Φm) ∼= Aut(Q(ζm)/Q) ∼= GalQ(xm−1) ∼= Aut(Zm) ∼= Z∗m.

44The notation d ‖ m means “d is a proper divisor of m”, i.e. they are not equal
(more generally, not associate).
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As one application of the more general cyclotomic polynomials,
we finish off the story about constructible n-gons.

I.L.20. THEOREM (Gauss-Wantzel). A regular n-gon is constructible
if and only if n = 2e p2 · · · ps with e ∈N and pi distinct Fermat primes.

PROOF. Recall that ζn is a constructible number ⇐⇒ Q(ζn)

is contained in a square-root tower over Q. If n is not of the form
shown, then (I.L.18) is not a power of 2 (since Fermat primes are the
only ones with p− 1 a power of 2), and so by the Tower Law such a
square-root tower can’t exist.

If n is of the indicated form, then by (I.L.18) |G| = 2t; and ap-
pealing to [Algebra I, II.L.8], we obtain a normal series with Z2-
quotients inside G. Applying the Galois correspondence, we see that
Q(ζn) is itself a square-root tower. �

Another application is to the inverse Galois problem for finite
abelian groups, i.e. products of cyclic groups Za1 × · · · ×Zak . To
exhibit them as quotients of a cyclotomic Galois group (I.L.19) it is
enough to find distinct primes p1, · · · , pk with ai | (pi − 1), and take
m = ∏ pi. (Why? Use the Chinese Remainder Theorem.) The next
result says this is always possible:

I.L.21. THEOREM. For each n ∈ Z>1 there are infinitely many primes
p with n | p−1.

PROOF. Suppose to the contrary that {p1, . . . , pN} is a complete
list. As Φn is monic, there exists a ∈ N sufficiently large that M :=
Φn(y) > 1, where y = anp1 · · · pN. Let p be a prime dividing M.

Since the constant term Φn(0) = ±1, and each pi divides the
other terms, pi - M (∀i). So p is not in our list. Also p - n: otherwise,
p | y =⇒ p - M, a contradiction.

Now p | Φn(y) =⇒ p | yn− 1 =⇒ yn ≡
(p)

1. We can’t have yd ≡
(p)

1

for d‖n, since then p | yd − 1 =⇒ y is a repeated root of xn − 1 over
Zp (impossible). But then y has order n in Zp and Lagrange =⇒
n | p−1. This contradicts our finite list. �
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Finally we should mention the following generalization of the
cyclicity of Z∗p, since it is relevant to deciding when (I.L.19) is cyclic.

I.L.22. THEOREM. For each odd prime p and positive integer e, Z∗pe is
cyclic.

PROOF. Write G = Zpe and J := {a ∈ G | ap = 1}. Given a ∈ J,
ap ≡

(p)
a =⇒ a ≡

(p)
1. There are then two possibilities: a = 1 + zpe−1,

which indeed gives p elements in J; and a = 1 + yp f−1 + zp f with
1 < f < e and 0 < y < p. If the last one happened, we’d have
1 ≡

(p f+1)
ap ≡

(p f+1)
1 + yp f =⇒ y ≡

(p)
0, a contradiction. So |J| = p.

Now apply the p-primary version of the structure theorem to-
gether with |G| = pe−1(p− 1) to decompose G as in internal direct
product of H := {g ∈ G | gpe−1

= 1} and K := {g ∈ G | gp−1 = 1},
with |H| = pe−1 and |K| = p − 1, and to write H ∼= ×k

i=1Zpei

(∑ ei = e − 1). But then H ∩ J = Zk
p, which gives k = 1. So H is

cyclic.
For K, let a ∈ G be a generator mod p (i.e. of Z∗p) and put b :=

ape−1 ∈ G. Since b ≡
(p)

a (Fermat), its powers b, b2, . . . , bp−1 must be

distinct in G. But since bp−1 = a|G| = 1, these bi lie in K; and so
K = 〈b〉 ∼= Zp−1 is also cyclic. Conclude that G ∼= Zpe−1 ×Zp−1

∼=
Zpe−1(p−1). �

This result (which immediately implies Z∗2pe is also cyclic) is per-
haps surprising, since of course Z∗pe is not a finite field. It does not
hold for p = 2: Z∗2e fails to be cyclic for e > 2 (cf. [Jacobson]).

Incidentally, while it’s great to know that these groups are cyclic,
it isn’t necessarily obvious what a generator is. It is a conjecture of
Artin (open since 1927) that every non-square positive integer is a
generator of Z∗p for infinitely many p. It isn’t known for any integer,
but predicts for instance that 2 is a generator of ≈ 37% of Z∗p’s.


