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I.M. Norms and traces

Let L/K be a Galois field extension, with G := Aut(L/K) =

{σ1, . . . , σd}, and α ∈ L. (We take the convention here that σ1 = idL.)
Many times we have argued that symmetric functions in the σi(α) are
G-invariant hence belong to K, as K = Inv(G). (And we should re-
mind the reader again that if L/K isn’t Galois, this is false.) Amongst
these symmetric functions are the coefficients of the minimal poly-
nomial mα of α over K, as well as its discriminant.

So the idea of harnessing this argument to produce maps from L to
K seems obvious, even though we haven’t needed it thus far in our
study of Galois theory.

I.M.1. DEF INITION. (i) The trace for L/K is the K-vector space
homomorphism

TrL/K : L → K

defined by TrL/K(α) := ∑d
i=1 σi(α).

(ii) The norm for L/K is the (multiplicative) group homomor-
phism

NL/K : L∗ → K∗

defined by NL/K(α) := ∏d
i=1 σi(α).

I.M.2. EXAMPLE. For a quadratic number field Q(
√

m)/Q, since
σ2(a + b

√
m) = a − b

√
m, we get Tr

Q(
√

m)/Q
(a + b

√
m) = 2a and

N
Q(

√
m)/Q

(a + b
√

m) = a2 − mb2. The latter, of course, has to do with
Pell’s equation.

To better understand norm and trace, let’s back up and consider
the Galois conjugates of α. Certainly all the σi(α) are roots of mα,
because G sends roots to roots, and α is a root. Since mα is irre-
ducible, G acts transitively on its roots, and so its roots are pre-
cisely the σi(α). Since these roots are distinct, there must be exactly
nα := deg(mα) = [K(α):K] distinct Galois conjugates. Indeed, writ-
ing Hα := Aut(L/K(α)) and dα := |Hα| = d/nα, we remark that
those σi’s in the same coset σHα yield the same σi(α), and those in
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different cosets don’t. So essentially by Lagrange, each distinct Ga-
lois conjugate is repeated exactly dα times.

Denote the multiplication-by-α map by µα : L → L. As a K-linear
transformation, its minimal polynomial is just mα, and this divides
its characteristic polynomial pα by Cayley-Hamilton. By structure
theory we know45 that pα | md

α; and since mα is irreducible (and K[x]
a UFD), this makes pα a power of mα. By considering degrees this
yields

(I.M.3) pα(x) = mα(x)dα =
d

∏
i=1

(x − σi(α)),

so that

(I.M.4) pα(x) = xd − TrL/K(α)xd−1 + · · ·+ (−1)dNL/K(α).

Of course, if α is a primitive element, then mα = pα.
In light of (I.M.4), I should remark that one can extend NL/K and

TrL/K to arbitrary finite extensions simply as the determinant and
trace of µα. So then (I.M.4) is the definition, and in the separable case
I.M.1 and (I.M.3) also hold with the modification that by σ1, . . . , σd

we mean the embeddings of L in a normal (or algebraic) closure
which fix K. In particular, in the situation of the last paragraph
(where K(α)/K may not be Galois), this gives

mα(x) = xnα − TrK(α)/K(α)xnα−1 + · · ·+ (−1)nαNK(α)/K(α)

since mα is the characteristic polynomial of µα on K(α). We now
summarize a few more straightforward facts about norm and trace.

I.M.5. PROPERTIES. (A) We have TrL/K(α) = dαTrK(α)/K(α) and
NL/K(α) = (NK(α)/K(α))

dα in the above notation. In particular, if κ ∈
K, then NL/K(κ) = κd and TrL/K(κ) = dκ. (One consequence is that
NL/K(κα) = κdNL/K(α), whilst K-linearity of TrL/K gives TrL/K(κα) =

κTrL/K(α).)

45This is just the statement that the invariant factors of L as a K[λ]-module satisfy
δ1 | δ2 | · · · |δs = mα and pα = ∏i δi. Here we deduce that all the δi = mα, s = dα,
and L ∼= (K[x]/(mα(x))⊕dα as a K[x]-module (with x acting by µα).
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(B) If M is an intermediate field, then NL/K = NM/K ◦ NL/M and
TrL/K = TrM/K ◦ TrL/M . (For the general case finite extension case,
think in terms of block matrices.)

(C) If L and K are number fields, with rings of integers OL and OK,
NL/K maps OL \ {0} → OK \ {0} (multiplicative monoid homomor-
phism), and TrL/K sends OL → OK. This is because Galois conju-
gates46 of algebraic integers have the same (monic, integral) minimal
polynomial hence remain algebraic integers.

(D) In particular, if K = Q, then NL/Q
sends OL \ {0} → Z \ {0}. The

units of OL are precisely the elements with norm ±1: if NL/Q
(ℓ) =

±1, then the “product of other Galois conjugates” furnishes an in-
verse in OL; while if the norm of ℓℓ′ is ±1, this must be true of the
norms of ℓ and ℓ′.

We state one more property as a

I.M.6. PROPOSITION. TrL/K is surjective.

PROOF. Let ℓ0 be such that σ1(ℓ0), . . . , σd(ℓ0) are a basis, which
we can do by the Normal Basis Theorem I.I.9. In that case their
sum certainly isn’t zero; so k0 := TrL/K(ℓ0) ∈ K∗. But then any
k = k

k0
TrL/K(ℓ0) = TrL/K(

k
k0
ℓ0), using K-linearity of TrL/K . □

This seems rather important. What about NL/K ? Surjectivity of
the norm for Q(

√
m)/Q (cf. Example ) would mean that every q ∈

Q∗ could be written as q = a2 − mb2 for some a, b ∈ Q∗. But this isn’t
true: for instance, if q ∈ N is prime, this equation says47 that m is a
square mod q (already false for m = −1 and q = 3).

So NL/K is not surjective, and describing the image is arithmeti-
cally delicate. Except for finite fields, the multiplicative groups L∗

need not be finitely generated, and so the same goes for the image.
It is easier to say something about the kernel, which is what we do
next.
46Again, in the non-normal case you have to replace these by the distinct embed-
dings of L in Lc or Q̄, which is to say, by Galois conjugates in Lc.
47One easily checks that we cannot have q | b.
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Hilbert’s Theorem 90.

In this subsection we assume once more that L/K is Galois. We
begin with a

I.M.7. LEMMA. Let σ %→ ℓσ be a map from G → L∗ satisfying

(I.M.8) ℓση = σ(ℓη)ℓσ (∀η, σ ∈ G).

Then there exists ℓ0 ∈ L∗ such that ℓη = ℓ0/η(ℓ0) (∀η ∈ G).

PROOF. Thinking of the σi ∈ G (i = 1, . . . , d) as distinct L-valued
characters of L∗, the Dedekind Independence Theorem I.L.8 ensures
that they are L-linearly independent. In particular, the linear combi-
nation ∑d

i=1 ℓσi σi(·) is not zero on all of L∗, and there exists α ∈ L∗

making ℓ0 := ∑i ℓσi σi(α) ∕= 0. Now compute (for any η ∈ G)

η(ℓ0) = ∑i η(ℓσi)(ησi)(α) =
(I.M.8)

∑i ℓησiℓ
−1
η (ησi)(α)

= ℓ−1
η

,
∑i ℓησi(ησi)(α)

-

[reindex] = ℓ−1
η (∑i ℓσi σi(α))

= ℓ−1
η ℓ0,

which gives the desired result. □

I.M.9. THEOREM (Hilbert). Given L/K cyclic, with G ∼= 〈ϕ〉. Then

NL/K(ℓ) = 1 ⇐⇒ ∃ ℓ0 ∈ L such that ℓ = ℓ0/ϕ(ℓ0).

PROOF. ( ⇐= ): this is obvious since

NL/K(ℓ0/ϕ(ℓ0)) = {∏i ϕi(ℓ0)}/{∏i ϕi(ϕ(ℓ0))} = 1.

( =⇒ ): Set ℓϕi := ℓϕ(ℓ)ϕ2(ℓ) · · · ϕi−1(ℓ) for each i (e.g. ℓϕ = ℓ). This

is well-defined since ℓϕd = ∏d−1
i=0 ϕi(ℓ) = NL/K(ℓ) = 1 = ℓ1, and

ℓϕj ϕj(ℓϕi) = ℓϕ(ℓ) · · · ϕj−1(ℓ) · ϕj(ℓ) · · · ϕi+j−1(ℓ) = ℓϕi+j .

So we get a map as in I.M.7, and thus the ℓ0. □

There is an additive analogue of this involving the trace. You
may find the proof in [Jacobson]:
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I.M.10. PROPOSITION. Let η %→ λη be a map from G → L satisfying
λζη = λζ + ζ(λη). Then there exists λ0 ∈ L such that λη = λ0 − η(λ0)

for all η ∈ G.

Here are some simple applications, the first of which features
Pythagorean triples:

I.M.11. EXAMPLE. Consider L/K = Q(i)/Q, with G = 〈ρ〉 ∼= Z2

(ρ = complex conjugation). Suppose N
Q(i)/Q

(a + bi) = a2 + b2 = 1.
Then by Hilbert’s theorem, there is some c + di ∈ Q(i) such that

a + bi =
c + di

ρ(c + di)
=

c + di
c − di

=
(c + di)(c + di)

c2 + d2 =
c2 − d2

c2 + d2 +
2cd

c2 + d2 i,

and conversely every element of this form has norm 1. This gives a
rational parametrization of all rational points on the unit circle.

The next application revisits a step in the proof of Galois’s theo-
rem (which was difficult if d was not prime):

I.M.12. COROLLARY. Let K contain d distinct dth roots of unity, and
L/K be cyclic of degree d. Then L = K(α) for some α ∈ L with αd ∈ K.

PROOF. Let ζ ∈ K be a primitive dth root of 1, and G = 〈ϕ〉.
We have NL/K(ζ) = ζd = 1. By Hilbert’s Theorem, there is some
α ∈ L for which ζ = α/ϕ(α). Rewriting this as ϕ(α) = αζ−1, we
see that ϕ(αd) = αd ( =⇒ αd ∈ K) and ϕi(α) = αζ−i. So we have
G(α) = {α, αζ, . . . , αζd−1}, whence deg(mα) = d and L = K(α). □

I.M.13. EXAMPLE. Consider K = Q(ζ3), L = K( 3
√

2), Aut(L/K) =
〈ϕ〉 ∼= Z3. There exists α ∈ L such that ϕ(α) = αζ−1

3 . Guess what α

is?

There is an analogous application of the additive analogue, re-
lated to splitting fields of polynomials like xp − x + k:48

I.M.14. COROLLARY. Let char(K) = p > 0, and L/K be cyclic of
degree p. Then L = K(β) for some β ∈ L with βp − β ∈ K.
48Again, see [Jacobson] for proof.
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Rings of integers revisited [Part 1: cyclotomic case].

We are now in a position to verify the unproved assertions from
[Algebra I, §§III.J,L] on number rings: the general ones about ideals
in OK; and the specific ones about cyclotomic rings of integers, which
we will do first.

The next theorem summarizes those claims made in [Algebra I,
§III.L] that were used to prove Fermat’s last theorem for exponents
not divisible by an irregular prime:

I.M.15. THEOREM. Let p > 2 be a prime number and K = Q(ζp) the
corresponding cyclotomic field.49

(i) The ring of integers is OK = Z[ζp].
(ii) The roots of unity in K are the ±ζ

j
p.

(iii) If u ∈ O∗
K is a unit, then u/ū is a root of 1 (of the form in (ii)).

We begin with the easiest part:

PROOF OF (ii). If there are any other roots of unity in K besides
the powers of ζ2p, then we have Q(ζm) ⊆ Q(ζp) for some m having
2p as proper divisor. By the Tower Law, φ(m) = [Q(ζm):Q] divides
[K:Q] = p − 1, which contradicts the formula for φ(m). □

Let’s deal with (i) next. We have Z∗
p
∼= Aut(K/Q) = {σj}

p−1
j=1 ,

with σj(ζp) := ζ
j
p. So for example TrK(1) = p − 1 while TrK(ζ

j
p) =

∑
p−1
i=1 ζ

ij
p = ∑

p−1
i′=1 ζ i′

p = −1 for j = 1, . . . , p − 1.
Though we won’t discuss this, computing rings of integers in

general is difficult, though there is an algorithm. The idea is to
take a basis of K/Q inside OK (like powers of a primitive element
in OK) and consider possible enlargements so long as the square of
any prime divides the discriminant of said basis, cf. I.M.18 below.
(Though you have to be able to decide whether specific elements
are in OK, and this requires computing characteristic polynomials,
which can be labor intensive.) Fortunately, nothing like this is re-
quired to deal with OQ(ζp), only the following

49We keep this notation through the end of this subsection.
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I.M.16. LEMMA. (a) (1 − ζp)OK ∩ Z = pZ.
(b) If α ∈ OK, then τα := TrK(α(1 − ζp)) ∈ pZ.

PROOF. (a) From p = Φp(1) = ∏
p−1
j=1 (1 − ζ

j
p) = NK(1 − ζp),

we have that pZ ⊂ (1 − ζp)OK ∩ Z ⊂ Z. Clearly the first or sec-
ond inclusion is an equality. If the first, we win. If the second,
then ∃α ∈ OK such that 1 = (1 − ζp)α, and taking norms gives
1 = NK(1 − ζp)NK(α) = pNK(α); but NK(α) ∈ Z (as α ∈ Z̄), and
this is a contradiction.

(b) First, α(1 − ζp) ∈ OK =⇒ τα ∈ Z. Second, since each
σj(1 − ζp) = 1 − ζ

j
p = (1 − ζp)(1 + ζp + · · · + ζ

j−1
p ) ∈ (1 − ζp)OK

and each σj(α) ∈ OK, we have τα ∈ (1− ζp)OK. Conclude by (a) that
τα ∈ pZ. □

PROOF OF I.M.15(i). We need to prove OK ⊂ Z[ζp]. Given α ∈
OK, we can write α = ∑

p−2
j=0 qjζ

j
p for some qj ∈ Q; the goal is to show

each qj ∈ Z. We compute

τα = TrK

)
∑

p−2
j=0 qj(ζ

j
p − ζ

j+1
p )

*
= ∑

p−2
j=0 qj(TrKζ

j
p − TrKζ

j+1
p )

= q0((p − 1)− (−1)) = q0p,

whence I.M.16(b) =⇒ q0 ∈ Z. Now set α1 := ∑
p−2
j=1 qjζ

j−1
p = (α −

q0)ζ
p−1
p ∈ OK, repeat the argument to get q1 ∈ Z, and continue in

this fashion with α2 := (α1 − q1)ζ
p−1
p ∈ OK etc. □

Turning finally to the units, what we need is the famous and ex-
tremely useful

I.M.17. LEMMA (Kronecker). Let α ∈ Z̄ be an algebraic integer, so
that its minimal polynomial mα(x) = ∏n

i=1(x − αi) ∈ Z[x]. If all of α’s
Galois conjugates have absolute values |αi| = 1, then α is a root of unity.

PROOF. Write mα = xn + a1xn−1 + · · · + an, with all ak ∈ Z.
Since each |αi| ≤ 1, we have also |ak| ≤ (n

k) (∀k). There are only
finitely many such polynomials (monic integral, of the same degree
or smaller, with these bounds on the coefficients). Moreover, if α sat-
isfies the assumptions of the lemma, so do its powers; and they lie
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in the same Q(α) hence have minimal polynomials of no higher de-
gree than n (= [Q(α):Q]). So α, α2, α3, etc. are all among the finitely
many roots of the finite set of polynomials just exhibited. Two dis-
tinct powers of α must therefore be equal. □

PROOF OF I.M.15(iii). Given our unit u ∈ O∗
K, also ū = σp−1(u) ∈

O∗
K hence u/ū ∈ OK. Indeed, since σp−1 is just complex conjugation

on K, and Aut(K/Q) is abelian, complex conjugation commutes with
all the σj’s. So σj(u/ū) = σj(u)/σj(u) evidently has absolute value 1
for all j, and we are done by Kronecker’s lemma. □

Rings of integers revisited [Part 2: ideals and norms].

It will be useful to have the following bit of language: a full lat-
tice Λ in a Q-vector space V of dimension n is a subgroup which is
free abelian of rank n. Equivalently, Λ is of the form Z〈β〉(∼= Zn)

with β = {β1, . . . , βn} a Q-basis of V, and we say that β is a basis of
Λ.

We begin with a generalization of our earlier notion of discrimi-
nant. Throughout K/Q is a number field of degree [K:Q] = n, and
we write TrK := TrK/Q

and NK := NK/Q
.

I.M.18. DEF INITION. The discriminant of γ = (γ1, . . . , γn) ∈ Kn

is ∆K(γ) := det(Q(γ)), where Q(γ) := [TrK(γiγj)]1≤i,j≤n.

One should think of this as the square of a measure of the covol-
ume of the lattice spanned by γ, a point of view which is justified by
I.M.19 and I.M.21 below:

I.M.19. PROPOSITION. (i) ∆K(γ) ∈ Q. Moreover, if γi ∈ OK, then
∆K(γ) ∈ Z.

(ii) For M ∈ Mn(Q) and δ := Mγ (thinking of δ, γ as column vec-
tors), ∆K(δ) = (det(M))2∆K(γ).

(iii) If γ and γ′ = Mγ are bases of full lattices Λ and Λ′, with Λ′ ⊆ Λ,
then |Λ/Λ′| = |det M|, and Λ = Λ′ ⇐⇒ |det M| = 1. Hence
∆K(Λ) := |∆K(any basis of Λ)| is well-defined, and

(I.M.20) ∆K(Λ′) = |Λ/Λ′|2∆K(Λ).
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PROOF. (i) is evident since the entries of Q(γ) are in Q resp. Z.
For (ii), the (i, j)th entry of M · Q(γ) · tM is

∑n
k=1 ∑n

ℓ=1 MikTrK(γkγℓ)Mjℓ = TrK
,
∑k ∑ℓ MikγkγℓMjℓ

-

= TrK
,
(∑k Mikγk)(∑ℓ Mjℓγℓ)

-

= TrK(δiδj).

So M Q(γ) tM = Q(δ), and taking det of both sides gives the desired
relation.

Finally, for (iii), use row and column operations on M to bring
it into the form diag(d1, . . . , dn), whence Λ/Λ′ ∼= Zd1 × · · · × Zdn .
Since the matrices producing those operations are in GLn(Z), they
have ±1 determinants and so |det M| = d1 · · · dn = |Λ/Λ′|. The
remaining statements are self-explanatory. □

Let θ be a primitive element, so that K = Q(θ), and write pθ(x) =:
∏n

i=1(x − θi). Obviously pθ = mθ is irreducible and the θi are dis-
tinct. Denote by Θ the basis {1, θ, θ2, . . . , θn−1} of K/Q, and note
that Q(Θ) = [TrK(θ

i+j−2)].
We recall from (I.M.4) that ∏i θi = NK(θ) and ∑i θi = TrK(θ), and

that one has θi = σi(θ) where σ1, . . . , σn are the distinct embeddings
of K in C (or equivalently, a system of representatives of the n cosets
of Aut(Kc/Q)/Aut(Kc/K)).

I.M.21. PROPOSITION. ∆K(Θ) = ∏i<j(θi − θj)
2 ( ∕= 0).

PROOF. Writing A = [θ
j−1
i ]1≤i,j≤n, det(A) = ∏i<j(θj − θi) is the

Vandermonde determinant. Now

[t A · A](i,j) = ∑n
k=1 θi−1

k θ
j−1
k = TrK(θ

i−1θ j−1) = Q(Θ)(i,j).

So Q(Θ) = t AA, and taking determinants gives ∆K(Θ) = (det(A))2

as desired. □

So we recover the polynomial discriminant in this case: ∆K(Θ) is
just the discriminant ∆mθ

of the polynomial mθ from I.K.1.

I.M.22. COROLLARY. ∆K(γ) ∕= 0 ⇐⇒ γ is a basis of K/Q.
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PROOF. Whether or not γ is a basis, Θ is one; so there exists M ∈
Mn(Q) such that γ = MΘ, and then ∆K(γ) = (det M)2∆K(Θ) by
I.M.19(ii), where ∆K(Θ) ∕= 0 by I.M.21. Now γ is a basis ⇐⇒ M is
invertible ⇐⇒ det(M) ∕= 0 ⇐⇒ ∆K(γ) ∕= 0. □

Another useful formula for the discriminant of a basis is

(I.M.23) ∆K(γ) = (det Σγ)
2 := (det[σi(γj)])

2.

We see this by writing the RHS as det(tΣγΣγ) then computing

(tΣγΣγ)(i,j) = ∑
k

σk(γi)σk(γj) = ∑
k

σk(γiγj) = TrK(γiγj) = Q(γ)(i,j).

Next recall that I(K), the monoid of integral ideals, comprises the
nonzero ideals in OK. We are ready to prove [Algebra I, III.L.5(iii)]:50

I.M.24. THEOREM. Any I ∈ I(K) is a full lattice in K: that is, I is
finitely generated as an abelian group, and isomorphic to Z[K:Q].

PROOF. By [Algebra I, III.J.17(a)(i)], I contains a basis B for K/Q.
[To recap: multiply a given basis of K by a suitably large integer, so
that the minimal polynomials of the basis elements become monic
integral, making them elements of OK. Then multiply them by a
single nonzero element of I.] Any such B satisfies ∆K(B) ∈ Z\{0}
by I.M.19(i) and I.M.22.

Choosing B = 〈β1, . . . , βn〉 ⊂ I with minimal |∆K(B)|, suppose
that I \ Z〈B〉 is nonempty, and take any α in it. Then α = ∑i qiβi

with all qi ∈ Q (since B is a Q-basis of K), but some qi (say q1) not in
Z. Defining B′ := (α − ⌊q1⌋β1, β2, . . . , βn), we note that:

• B′ =

6

778

q1 − ⌊q1⌋ q2 · · · qn

0 1 0
...

. . .

0 0 1

9

::;B =: M′B is clearly a basis of K/Q

(as M′ is invertible);
• α − ⌊q1⌋β1 ∈ I =⇒ B′ ⊂ I ( =⇒ ∆K(B

′) ∈ Z); and
• 0 < q1 − ⌊q1⌋ < 1.

50as well as the assumption of [Algebra I, III.J.17(a)(ii)].
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So |∆K(B
′)| = (det M′)2|∆K(B)| = (q1 − ⌊q1⌋)2|∆K(B)| < |∆K(B)|

contradicts minimality of |∆K(B)|.
Conclude that I \ Z〈B〉 is in fact empty, i.e. I = Z〈B〉. □

I.M.25. DEF INITION. A basis of OK, which exists by I.M.22, is
called an integral basis of K. The discriminant of K, written ∆K, is
the discriminant ∆K(OK) of any integral basis of K.

I.M.26. EXAMPLE. Given D ∈ Z\{0} squarefree and ≡
(4)

2 or 3, the

ring of integers OK of K = Q(
√

D) has basis (1,
√

D) and discrim-

inant ∆K = det
)

Tr(1) Tr(
√

D)

Tr(
√

D) Tr(D)

*
= det

,
2 0
0 2D

-
= 4D. For D ≡

(4)
1, a

similar computation gives ∆K = D.

The next result settles [Algebra I, III.L.5(ii)], except for multi-
plicativity:

I.M.27. PROPOSITION-DEF INITION. (i) For any I ∈ I(K), the ideal
norm N(I) := |OK/I| is finite.

(ii) If I ⊇ J, then N(I) · |I/J| = N(J); in particular, N(I) ≤ N(J).
(iii) [“strictness”] If I ⊋ J, then N(I) < N(J).
(iv) If α ∈ OK, then N((α)) = |NK(α)|.

PROOF. By I.M.24, OK and I are full lattices, and so (I.M.20) =⇒
|OK/I|2 = ∆K(I)

∆K
, in which numerator and denominator are nonzero

by I.M.22. This gives (i).
For (ii) and (iii), note that as abelian groups, J ≤ I ≤ OK =⇒

OK/J ∼= OK/I
I/J =⇒ |OK/I| = |OK/I|

|I/J| . Hence, if N(I) = N(J), then
|I/J| = 1 and I = J.

Finally, if we write B = {β1, . . . , βn} for a basis of OK, then
B′ = {αβ1, . . . , αβn} is a basis of (α). But then, if Mα = (mij) is
the matrix of multiplication by α with respect to B, we have αβ j =

∑i mijβi, which is to say B′ = tMαB. Thus, by I.M.19(iii) N((α))
def
=

|OK/(α)| =
!!det tMα

!! = |det Mα|
def
= |NK(α)|. □

Turning to maximal ideals and their invertibility, we need two
lemmas which make essential use of the ideal norm. The first high-
lights something very special about number rings:
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I.M.28. LEMMA. Prime ideals in a number ring OK are maximal.51

PROOF. Let P be a prime ideal in OK. By I.M.27(i), OK/P is fi-
nite. Since P is prime, OK/P is a domain. So by Wedderburn’s little
theorem [Algebra I, III.F.18], OK/P is a field, and P is maximal. □

I.M.29. LEMMA. Any I ∈ I(K) contains a product of maximal ideals.

PROOF. Induce on N(I). By strictness, N(I) = 1 =⇒ I = OK

(base case). Assuming the statement for ideals with norm ≤ k, sup-
pose N(I) = k + 1, and also that I isn’t prime (if it is, we’re done).
Then there exist α1, α2 ∈ OK\I such that α1α2 ∈ I. Writing Ji :=
I + (αi), strictness implies N(Ji) < k + 1. So Ji ⊇ ∏j Pij by the induc-
tive hypothesis, and

(∏j P1j)(∏j P2j) ⊂ J1 J2 = I2 + α1 I + α2 I + α1α2 ⊂ I

completes the induction. □

We can now establish [Algebra I, III.L.5(i)], i.e. that each maxi-
mal/prime ideal has a fractional-ideal inverse:

I.M.30. THEOREM. For any maximal ideal P ⊂ OK, there exists γ ∈
K\OK such that γP ⊆ OK; and then ((γ) +OK)P = OK, i.e. (γ) +OK

yields an inverse P−1 ∈ J (K).

PROOF. Let α ∈ P\{0}. By I.M.29, there exists a product of maxi-
mal ideals P1 · · · Pt ⊆ (α), where we take t to be as small as possible.
Renumbering the Pi if necessary, P ⊃ (α) ⊃ ∏t

i=1 Pi (i.e. P | ∏ Pi)
=⇒ P ⊃ P1 (i.e. P | P1) since P is prime; and since P1 is maximal,
P = P1.

Now minimality of t =⇒ (α) ∕⊃ P2 · · · Pt =⇒ ∃ β ∈ P2 · · · Pt\(α)
=⇒ β

α =: γ /∈ OK (since otherwise β = α
β
α ∈ αOK = (α))

=⇒ γP = α−1P · (β) ⊂ α−1P1P2 · · · Pt ⊂ α−1(α) = OK

proves the first statement.

51Remember that maximal ideals are always prime, but not conversely in general.
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Writing P′ = (γ) + OK, we have P ⊂ γP + P (= P′P) ⊂ OK;
so by maximality of P, either γP + P = OK (and we are done) or
γP + P = P =⇒ γP ⊂ P. In the latter event, writing the matrix
of µγ with respect to a basis of P, we see that it has a monic integral
characteristic polynomial, whence γ ∈ OK, a contradiction. □

It remains to show that the ideal norm is multiplicative. We al-
ready know (by I.M.27(ii)) that for I ⊇ J, N(I) | N(J), and thus that
an ideal with prime norm is prime (why?). (The converse isn’t quite
true: the norm of a prime ideal is in general a prime power.) I also
claim that for any I ∈ I(K), we have N(I) ∈ I hence I ⊇ (N(I)).52

This is because the order of 1 + I ∈ OK/I must divide |OK/I| =

N(I), and so N(I)(1 + I) = 0 =⇒ N(I) ∈ I.
We also know that any I ∈ I(K) is a product of maximal ideals,

since this didn’t use multiplicativity of the ideal norm (only I.M.27(ii-
iii) and I.M.30).

I.M.31. LEMMA. Given I, P ∈ I(K), with P prime, we have |I/PI| =
|OK/P| (= N(P)), hence

N(PI) = |OK/PI| = |OK/I||I/PI| = N(I)N(P).

PROOF. First of all, I\PI is nonempty, since otherwise I = PI
=⇒ OK = I I−1 = PII−1 = P. Given α ∈ I\PI, we have (α) ∕⊂
PI =⇒ αI−1 ∕⊂ P and (α) ⊂ I =⇒ αI−1 ⊂ I I−1 = OK. Since
P is maximal and P ⊊ αI−1 + P ⊆ OK, we get αI−1 + P = OK, and
αβ + π = 1 for some β ∈ I−1 and π ∈ P.

Clearly multiplication by α induces a homomorphism of abelian
groups from OK/P to I/PI, and multiplication by β gives a map
back. To check that these are mutually inverse, just note that by αβ+

π = 1, λ + P = αβλ + P and µ + PI = αβµ + PI. □

Writing an arbitrary ideal as a product of maximals, I = ∏i Pi,
and iteratively applying I.M.31, gives N(I) = ∏i N(Pi). By factoring
any other ideal J, and thus the product I J, we arrive at the

52This was used in the proof of [Algebra I, III.L.20], if you want it to work for
arbitrary number fields.
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I.M.32. THEOREM. I, J ∈ I(K) =⇒ N(I J) = N(I)N(J).

One can now have complete confidence in the results of [Algebra I,
§III.L] for general number fields.


