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IV.B. Chain conditions

In this short section we won’t assume R is commutative, since it
connects both to the material on representation theory just covered
and to the material ahead. (Some of it will look familiar; in fact,
IV.B.12 is just #4 from Problem Set 8.) Let M be a left or right R-
module.

IV.B.1. DEFINITION. (i) M is Noetherian if the ACC holds: for
every ascending chain M1 ⊂ M2 ⊂ · · · (⊂ M) of submodules, there
exists n ∈N such that Mi = Mn for every i ≥ n.

(ii) M is Artinian if the DCC holds: for every descending chain
M ⊃ M1 ⊃ M2 ⊃ · · · of submodules, there exists n ∈ N such that
Mi = Mn for every i ≥ n.

In either case, we say that the chain stabilizes at n.

IV.B.2. EXAMPLE. (i) As a Z-module, Z is Noetherian (because
submodules have finite index) but not Artinian (Mk := (pk) violates
the DCC).

(ii) As a Z-module, Z[ 1
p ]/Z is Artinian (because proper submod-

ules have finite order) but not Noetherian (Mk := ( 1
pk ) violates the

ACC).

IV.B.3. DEFINITION. R is said to be left [resp. right] Artinian or
Noetherian (as a ring) if RR [resp. RR] is Artinian or Noetherian. We
remove the left/right moniker if it is both left and right Artinian or
Noetherian.

IV.B.4. EXAMPLES. (i) Any division ring D is trivially Noetherian
and Artinian: there are no proper nontrivial left or right ideals.

(ii) Any matrix ring Mn(D) over a division ring is Noetherian and
Artinian, cf. IV.B.13.

(iii) Any commutative PID is Noetherian. [Proof: given a sequence
I1 ⊂ I2 ⊂ · · · , i.e. (r1) ⊂ (r2) ⊂ · · · , of ideals, take the union I. This
is an ideal, so I = (r). But r ∈ (rn) for some n, so I ⊂ (rn) hence
Ii = In for i ≥ n.]
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(iv) Every ring of integers in a number field is Noetherian. [Proof: re-
call that associated to each ideal I ⊂ OK is a norm N(I) := |OK/I| ∈
N; it has the property that I1 ⊂ I2 =⇒ N(I1) > N(I2), with equal-
ity iff I1 = I2. Since a decreasing sequence of natural numbers must
eventually stabilize, so must any ascending chain of ideals.]

IV.B.5. REMARK. The ACC and DCC may be rephrased in terms
of every nonempty set M of submodules of M having a maximal and min-
imal element. If the latter property holds, then any ascending [resp.
descending] chain stabilizes: simply take M to be the chain {Mi}i∈N.
The maximal [resp. minimal] element must be a member of the chain,
i.e. some Mn, and then the chain stabilizes at n.

Conversely, assuming e.g. the DCC, suppose that some nonempty
set of modules M has no minimal element. For each M′ ∈ M, we
may then choose M′′ ∈ M such that M′ ) M′′, defining a map
f : M → M. (This uses the Axiom of Choice.) Now pick M0 ∈ M,
and define Mi recursively by Mi := f (Mi−1); this gives M0 ) M1 )
M2 ) · · · , in contradiction to the DCC.

IV.B.6. LEMMA. Given an exact sequence 0 → A
f→ B

g→ C → 0 of
R-modules, B is Noetherian [resp. Artinian] ⇐⇒ A and C are Noetherian
[resp. Artinian].

PROOF (FOR NOETHERIAN). ( =⇒ ): An ascending chain of sub-
modules of A or C gives an ascending chain in B via f resp. g−1,
which then must stabilize (since B is Noetherian). This forces the
chains in A or C to stabilize as well, and so A and C satisfy the ACC.

(⇐= ): Let B1 ⊂ B2 ⊂ · · · be an ascending chain in B. We need to
show that it stabilizes. Set Ai := f−1( f (A) ∩ Bi) and Ci := g(Bi);
then writing fi := f |Ai and gi := g|Bi ,

0→ Ai
fi→ Bi

gi→ Ci → 0

is exact since ker(gi) = ker(g) ∩ Bi = f (A) ∩ Bi = f (Ai). Now the
{Ai} and {Ci} stabilize at some n ∈ N, yielding for each i ≥ n a
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commutative diagram

0 // An // Bn //
� _

ı
��

Cn // 0

0 // Ai // Bi // Ci // 0.

Given β ∈ Bi, let γ = gi(β) ∈ Ci = Cn, and pick β′ ∈ g−1
n (γ) ⊂ Bn.

Since gi sends β − ı(β′) 7→ 0, there exists α ∈ Ai = An such that
β − ı(β′) = fi(α) = ı( fn(α)). But then β = ı(β′ + fn(α)), which
shows ı is surjective and Bi = Bn. �

IV.B.7. REMARK. (i) The lemma has the following immediate con-
sequence: given a submodule N ⊂ M, if M satisfies ACC or DCC,
then so do N and M/N (use the exact sequence 0 → N → M →
M/N → 0).

(ii) Similarly, M1 ⊕ · · · ⊕Mn satisfies ACC/DCC iff the {Mi} do
(use 0→ M′ → M′ ⊕M′′ → M′′ → 0 and induction).

(iii) The argument in the lemma’s proof can be generalized (see
the HW) to prove the five-lemma: suppose we are given a commuta-
tive diagram

0 // A1 //

����

A2 // A3 //


��

A4 // A5 //
� _

��

0

0 // B1 // B2 // B3 // B4 // B5 // 0

of R-modules, with exact rows; then  is an isomorphism.

IV.B.8. THEOREM. If R is left [resp. right] Noetherian or Artinian,
then so is every finitely generated left [resp. right] R-module.

PROOF. To say that a left [resp. right] R-module M is finitely gen-
erated is to say that there is a surjective left [resp. right] R-module
homomorphism g : R⊕n � M. That is, M ∼= R⊕n/ ker(g). The hy-
pothesis is that, as a left [resp. right] R-module, R itself satisfies a
chain condition (ACC or DCC). By IV.B.7(ii), R⊕n satisfies the chain
condition; and then, by IV.B.7(i), so does its quotient M. �
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The next result gives an important characterization of Noetheri-
anity:

IV.B.9. THEOREM. An R-module satisfies the ACC ⇐⇒ every sub-
module is finitely generated.

PROOF. ( =⇒ ): Given an R-submodule N ⊂ M, where M sat-
isfies ACC. By IV.B.5, the set M of f.g. submodules of N contains a
maximal element N0 = R〈η1, . . . , ηn〉. Take any η ∈ N. By maximal-
ity of N0, R〈η1, . . . , ηn, η〉 = N0; hence N0 = N and N is f.g.

(⇐= ): Given a chain M1 ⊂ M2 ⊂ · · · , M∞ := ∪j>0Mj is a submod-
ule of M hence f.g., by (say) µ1, . . . , µn. Each of these is in some Mi,
and so M∞ ⊂ Mi0 for some i0. That is, the chain stabilizes at i0. �

If we consider R as a (say, left) module over itself, then this says
R is left Noetherian iff its left ideals are all finitely generated. In
particular:

IV.B.10. COROLLARY. Suppose R is commutative. Then R is Noether-
ian ⇐⇒ every ideal is finitely generated.

IV.B.11. REMARK. With some effort, we checked both the ACC
and finite generation of ideals for number rings. Depending on your
outlook, it’s either reassuring or unpleasant to realize, in retrospect,
that we only needed to check one or the other.

IV.B.12. THEOREM. An R-module M has a composition series ⇐⇒
M satisfies ACC and DCC.

PROOF. ( =⇒ ): By the 1st Isomorphism Theorem, we have the

Fact 1: If N ⊇ N′ and M′ are submodules of M, with N ∩ M′ = N′ ∩
M′ (=: K) and N/K = N′/K, then N = N′.

So if M has a composition series M = M0 ⊃ M1 ⊃ · · · ⊃ Mn = {0},
and N ⊇ N′, then by induction Fact 1 implies

Fact 2: If N ⊇ N′ and N∩Mi
N∩Mi+1

= N′∩Mi
N′∩Mi+1

for all i, then N = N′.

But now observe that GriN := N∩Mi
N∩Mi+1

= (N∩Mi)+Mi+1
Mi+1

is a submod-

ule of Mi
Mi+1

, which is simple (by defintion of CS). So GriN is either
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{0} or Mi
Mi+1

, and we set `(N) := #{i | GriN 6= {0}}. Considering
any ascending or decending chain beginning at N, it is now clear
that — since a proper inclusion requires (by Fact 2) an increase or de-
crease in `(·), which is bounded above (by n) and below (by 0) — the
chain must stabilize. So ACC and DCC hold, i.e. M is Noetherian
and Artinian.

(⇐= ): Suppose M is Noetherian and Artinian, and let N ⊆ M be
a nonzero submodule. Then N has a maximal proper submodule
by Noetherianity and IV.B.5. Now let M0 := M, M1 be a maximal
proper submodule, M2 be a maximal proper submodule of that, and
so on (which we can do by the Axiom of Choice, as in IV.B.5). By
construction, this decending series can only stabilize at {0}, and sta-
bilize it must, by the Artinian hypothesis. Moreover, the successive
quotients are simple by the 1st Isomorphism Theorem; and so we get
our composition series. �

IV.B.13. REMARK. In particular, if RR [resp. RR] has a CS, then R
is left [resp. right] Noetherian and Artinian. For instance, in view
of the composition series constructed in the proof of III.B.2 (and its
“transpose”), we conclude from IV.B.12 that Mn(D) (D a division
ring) is left and right Noetherian and Artinian.


