IV.C. Primes and radicals

Returning to the commutative setting, let $\mathcal{S} \subset R$ be a multiplicative subset, and $\mathcal{I} \subset R$ a (necessarily proper) ideal with $\mathcal{I} \cap \mathcal{S}=\varnothing$. The set

$$
\mathrm{S}:=\{J \subset R \text { ideal } \mid J \cap \mathcal{S}=\varnothing, J \supset \mathcal{I}\}
$$

contains \mathcal{I}, so is nonempty. We have the following key
IV.C.1. Lemma. S has a maximal element P, and it is prime.

Proof. The maximal element exists by Zorn (straightforward), but why is it prime? Let $I_{1}, I_{2} \subset R$ be ideals with $I_{1} I_{2} \subset P$, but $I_{1}, I_{2} \not \subset P$. Then $I_{j}+P \supsetneq P$ and $I_{j}+P \supset \mathcal{I}$, so $\left(I_{j}+P\right) \cap \mathcal{S} \neq \varnothing$ by maximality of P. Write $\imath_{j}+p_{j} \in\left(I_{j}+P\right) \cap \mathcal{S}$ for $j=1,2$, and observe that $\left(l_{1}+p_{1}\right)\left(\imath_{2}+p_{2}\right)$ belongs to \mathcal{S} (by multiplicativity) and also to $I_{1} I_{2}+P=P$. This contradicts $P \cap \mathcal{S}=\varnothing$.

This has the immediate
IV.C.2. COROLLARY. R has a prime ideal disjoint from \mathcal{S}.

Proof. Since $0 \notin \mathcal{S}$, we can apply the Lemma with $\mathcal{I}=\{0\}$.
This is admittedly not very interesting if R is a domain, since then $\{0\}$ is prime. It also wastes the power of the Lemma, which is a broad generalization of the existence of maximal ideals (the $\mathcal{S}=\{1\}$ case). For a better application, we first need a
IV.C.3. Definition. The radical of an ideal $I \subsetneq R$ is

$$
\sqrt{I} \text { or } \operatorname{Rad}(I):=\bigcap_{\substack{P \supset I \\ \text { prime }}} P
$$

This is a proper ideal containing $I .^{2}$ (Note that the intersection is nonempty, since a proper ideal is contained in a maximal, a fortiori

[^0]prime, ideal.) The nilradical of R is the special case
$$
N(R):=\operatorname{Rad}(\{0\})=\bigcap_{P \text { prime }} P .
$$

If $I=\operatorname{Rad}(I)$, then we call I a radical ideal. Of course, if I is prime, then it is radical. (As a special case, if R is a domain, then $\{0\}$ is a prime ideal, and the nilradical is zero.) But radical ideals are a larger class than prime ideals.
IV.C.4. Example. In $R=\mathbb{Z}$, if p_{1}, \ldots, p_{r} are distinct prime numbers, then $\operatorname{Rad}\left(\left(p_{1}^{m_{1}} \cdots p_{r}^{m_{r}}\right)\right)=\left(p_{1}\right) \cap \cdots \cap\left(p_{r}\right)=\left(p_{1} \cdots p_{r}\right)$. So the nonzero radical ideals are precisely the ideals generated by squarefree integers.
IV.C.5. Theorem. $\operatorname{Rad}(I)=\left\{r \in R \mid r^{n} \in I\right.$ for some $\left.n \in \mathbb{N}\right\}$.

Proof. (\supseteq) : If $r^{n} \in I$ and P is a prime containing I, then $r^{n} \in P$ $\Longrightarrow r \in P \Longrightarrow r \in \operatorname{Rad}(I)$.
$(\subseteq):$ Let $r \in R$, with $r^{n} \notin I(\forall n \in \mathbb{N})$. [We need to show that $r \notin$ $\operatorname{Rad}(I)$.] The set $\mathcal{S}:=\left\{r^{n} \mid n \in \mathbb{N}\right\}$ is multiplicative, and $\mathcal{S} \cap I=\varnothing$. By Lemma IV.C.1, there exists a prime ideal \mathcal{P} with $\mathcal{P} \cap \mathcal{S}=\varnothing$ and $\mathcal{P} \supset I$. Clearly $r \notin \mathcal{P}$ (since $r \in \mathcal{S})$, and so $r \notin \operatorname{Rad}(I)$.
IV.C.6. Corollary. The nilradical of R consists of its nilpotent elements: $N(R)=\left\{r \in R \mid r^{n}=0\right.$ for some $\left.n \in \mathbb{N}\right\}$.

We summarize some properties of the radical:
IV.C.7. Corollary. (i) $\operatorname{Rad}(\operatorname{Rad}(I))=\operatorname{Rad}(I)$
(ii) $\operatorname{Rad}\left(I_{1} I_{2} \cdots I_{n}\right)=\operatorname{Rad}\left(\cap_{j} I_{j}\right)=\cap_{j} \operatorname{Rad}\left(I_{j}\right)$
(iii) $\operatorname{Rad}\left(I^{n}\right)=\operatorname{Rad}(I)$.
(iv) $\operatorname{Rad}(P)=P$ for P prime.

Proof. (i) By IV.C.5, the LHS comprises elements with a power in $\operatorname{Rad}(I)$, which is equivalent to having a power in I.
(ii) An element r in the RHS is one with $r^{m_{j}} \in I_{j}$ for some $m_{j} \in \mathbb{N}$ (for each j), hence with $r^{\sum_{j} m_{j}} \in I_{1} \cdots I_{n}(\Longrightarrow r \in$ LHS). An element in the LHS belongs to the middle term since $I_{1} \cdots I_{n} \subset I_{1} \cap \cdots \cap I_{n}$.

An element r in the middle term has $r^{m} \in \cap_{j} I_{j}$ hence belongs to the RHS.
(iii) We have LHS \subset RHS since $I^{m} \subset I$. For the converse, if $r^{m} \in I$ then $r^{m n} \in I^{n}$. (iv) is obvious.

For one more result related to IV.C.1, consider the case where the multiplicative subset \mathcal{S} is the intersection of complements of prime ideals P_{1}, \ldots, P_{n}. Then it turns out that the maximal elements of S are precisely the P_{i} :
IV.C.8. Proposition ("Prime avoidance lemma"). Given prime ideals $P_{1}, \ldots, P_{n} \subset R$, any ideal $I \subset P_{1} \cup \cdots \cup P_{n}$ is contained in some P_{j}.

Proof. Inductively assume the result for fewer than n primes. Then the only way it can fail for n primes is if $I \not \subset \mathrm{U}_{j}:=\cup_{i \neq j} P_{i}$ for each j. Suppose this, pick elements $\imath_{j} \in I \backslash\left(I \cap \mathrm{U}_{j}\right) \subset I \cap P_{j}$ ("only in $P_{j}^{\prime \prime}$), and put $\imath:=\imath_{1} \cdots \imath_{n-1}+\imath_{n} \in I \subset P_{1} \cup \cdots \cup P_{n}$. Clearly $\imath \in P_{i_{0}}$ for some i_{0}. If $i_{0}<n$, then $\left(\imath_{1} \cdots \imath_{n-1} \in P_{i_{0}} \Longrightarrow\right) \imath_{n} \in P_{i_{0}}$ yields a contradiction. If $i_{0}=n$, then we get $\imath_{1} \cdots \imath_{n-1} \in P_{n}$, which contradicts primality of P_{n} (since it doesn't contain $\imath_{1}, \ldots, \imath_{n-1}$).
IV.C.9. REMARK. The reason for the name is the contrapositive statement: if $I \not \subset P_{1}, \ldots, P_{n}$, then there exists $a \in I$ avoiding all the primes: $a \notin P_{1} \cup \cdots \cup P_{n}$.

To get a feel for what this says in an "algebro-geometric" setting, think of $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ as the "ring of regular functions on \mathbb{C}^{n} ", and let I be an ideal comprising functions whose common vanishing locus is a curve $C \subset \mathbb{C}^{n}$ (1-dimensional variety). If each P_{j} is (say) a maximal ideal, comprising functions whose common vanishing locus is a single point $q_{j} \in \mathbb{C}^{n}$, then $I \not \subset P_{j}$ means that there is a function f_{j} vanishing on C that doesn't vanish on q_{j}, i.e. $q_{j} \notin C$. What IV.C. 8 then tells us is that there exists a single function f vanishing on C with $f\left(q_{i}\right) \neq 0(\forall i)$.

Primes and finite generation.

IV.C.10. Proposition. An ideal which is maximal in the set of non-finitely-generated ideals is prime.

Proof. Suppose P is maximal in this set, $a_{1}, a_{2} \notin P$, and $a_{1} a_{2} \in$ P; we aim for a contradiction. By maximality of $P, P+\left(a_{j}\right)$ is finitely generated, taking the form $\left(p_{1 j}+r_{1 j} a_{j}, \ldots, p_{n j}+r_{n j} a_{j}\right)$ with $p_{i j} \in P$.

Define an ideal $J:=\left\{r \in R \mid r a_{1} \in P\right\}$; since $a_{1} a_{2} \in P$, we have $\left(p_{i 2}+r_{i 2} a_{2}\right) a_{1}=p_{i 2} a_{1}+r_{i 2} a_{2} a_{1} \in P(\forall i) \Longrightarrow(P \subsetneq) P+\left(a_{2}\right) \subset J$. By maximality of P, J is finitely generated; write $J=\left(\jmath_{1}, \ldots, \jmath_{m}\right)$.

Given $x \in P$, we have $x \in P+\left(a_{1}\right)$

$$
\begin{aligned}
& \Longrightarrow \exists\left\{s_{i}\right\}_{i=1}^{n} \subset R \text { s.t. } x=\sum_{i} s_{i}\left(p_{i 1}+r_{i 1} a_{1}\right)=\sum_{i} s_{i} p_{i 1}+\sum_{i} s_{i} r_{i 1} a_{1} \\
& \Longrightarrow\left(\sum_{i} s_{i} r_{i 1}\right) a_{1}=x-\sum_{i} s_{i} p_{i 1} \in P \\
& \left.\Longrightarrow \sum_{i} s_{i} r_{i 1} \in J \text { (by defn of } J\right) \\
& \left.\Longrightarrow \exists\left\{t_{k}\right\}_{k=1}^{m} \in R \text { s.t. } \sum_{i} s_{i} r_{i 1}=\sum_{k} t_{k}\right]_{k} \\
& \Longrightarrow x=\sum_{i} s_{i} p_{i 1}+\sum_{k} t_{k j k} a_{1},
\end{aligned}
$$

whence $P=\left(p_{11}, \ldots, p_{n 1}, \jmath_{1} a_{1}, \ldots, \jmath_{m} a_{1}\right)$, which is absurd.

This last result allows us to connect prime ideals to the ACC, strengthening the equivalence between Noetherianity and finite generation of all ideals in IV.B.10:
IV.C.11. THEOREM (Cohen). R is Noetherian \Longleftrightarrow every prime ideal is finitely generated.

Proof. [Prefatory note: only the $" \Longleftarrow "$ direction is new. Intuitively, we might expect it to be true (from our experience with number rings) by decomposing arbitrary ideals as products of prime ideals, obtaining f.g. of the former from f.g. of the latter, and applying IV.B.10. But this doesn't work, because general ideals in fairly simple Noetherian rings like $\mathbb{C}[x, y]$ fail to decompose as products of primes. So the proof looks completely different.]

Assume that all primes are f.g., and suppose the set $\mathrm{S}:=\{I \subset$ $R \mid I$ non-f.g. $\}$ is nonempty. Then it is partially ordered by inclusion; and for any chain $\left\{I_{\alpha}\right\} \subset \mathrm{S}$, the union $\cup_{\alpha} I_{\alpha}=: I$ is an ideal containing every I_{α}.

Suppose I is f.g.: if $I=\left(r_{1}, \ldots, r_{k}\right)$, then each generator is in some I_{α}. By the total ordering on ideals in the chain, the $\left\{r_{k}\right\}$ all belong to some $I_{\alpha_{0}}$. But then I lies inside that $I_{\alpha_{0}}$, so $I=I_{\alpha_{0}}$ is not f.g., a contradiction.

So every chain in S has an upper bound in S , and we may apply Zorn to obtain a maximal element $P \in \mathrm{~S}$. This is prime by IV.C.10. But then by hypothesis, it is f.g., a contradiction. So $S=\varnothing$.

[^0]: ${ }^{2}$ The process of taking the radical is called "radicalization". Whereas normal people might be radicalized by their ideals, algebraists are so extreme (and apparently immune to normal English syntax) that they radicalize their ideals.

