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IV.C. Primes and radicals

Returning to the commutative setting, let S ⊂ R be a multiplica-
tive subset, and I ⊂ R a (necessarily proper) ideal with I ∩ S = ∅.
The set

S := {J ⊂ R ideal | J ∩ S = ∅, J ⊃ I}
contains I , so is nonempty. We have the following key

IV.C.1. LEMMA. S has a maximal element P, and it is prime.

PROOF. The maximal element exists by Zorn (straightforward),
but why is it prime? Let I1, I2 ⊂ R be ideals with I1 I2 ⊂ P, but
I1, I2 6⊂ P. Then Ij + P ) P and Ij + P ⊃ I , so (Ij + P) ∩ S 6= ∅ by
maximality of P. Write ıj + pj ∈ (Ij + P)∩S for j = 1, 2, and observe
that (ı1 + p1)(ı2 + p2) belongs to S (by multiplicativity) and also to
I1 I2 + P = P. This contradicts P ∩ S = ∅. �

This has the immediate

IV.C.2. COROLLARY. R has a prime ideal disjoint from S .

PROOF. Since 0 /∈ S , we can apply the Lemma with I = {0}. �

This is admittedly not very interesting if R is a domain, since
then {0} is prime. It also wastes the power of the Lemma, which is a
broad generalization of the existence of maximal ideals (the S = {1}
case). For a better application, we first need a

IV.C.3. DEFINITION. The radical of an ideal I ( R is
√

I or Rad(I) :=
⋂

P⊃I
prime

P.

This is a proper ideal containing I.2 (Note that the intersection is
nonempty, since a proper ideal is contained in a maximal, a fortiori

2The process of taking the radical is called “radicalization”. Whereas normal peo-
ple might be radicalized by their ideals, algebraists are so extreme (and apparently
immune to normal English syntax) that they radicalize their ideals.
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prime, ideal.) The nilradical of R is the special case

N(R) := Rad({0}) =
⋂

P prime

P.

If I = Rad(I), then we call I a radical ideal. Of course, if I is
prime, then it is radical. (As a special case, if R is a domain, then {0}
is a prime ideal, and the nilradical is zero.) But radical ideals are a
larger class than prime ideals.

IV.C.4. EXAMPLE. In R = Z, if p1, . . . , pr are distinct prime num-
bers, then Rad((pm1

1 · · · p
mr
r )) = (p1)∩ · · · ∩ (pr) = (p1 · · · pr). So the

nonzero radical ideals are precisely the ideals generated by square-
free integers.

IV.C.5. THEOREM. Rad(I) = {r ∈ R | rn ∈ I for some n ∈N}.

PROOF. (⊇): If rn ∈ I and P is a prime containing I, then rn ∈ P
=⇒ r ∈ P =⇒ r ∈ Rad(I).

(⊆): Let r ∈ R, with rn /∈ I (∀n ∈ N). [We need to show that r /∈
Rad(I).] The set S := {rn | n ∈N} is multiplicative, and S ∩ I = ∅.
By Lemma IV.C.1, there exists a prime ideal P with P ∩ S = ∅ and
P ⊃ I. Clearly r /∈ P (since r ∈ S), and so r /∈ Rad(I). �

IV.C.6. COROLLARY. The nilradical of R consists of its nilpotent ele-
ments: N(R) = {r ∈ R | rn = 0 for some n ∈N}.

We summarize some properties of the radical:

IV.C.7. COROLLARY. (i) Rad(Rad(I)) = Rad(I)
(ii) Rad(I1 I2 · · · In) = Rad(∩j Ij) = ∩jRad(Ij)

(iii) Rad(In) = Rad(I).
(iv) Rad(P) = P for P prime.

PROOF. (i) By IV.C.5, the LHS comprises elements with a power
in Rad(I), which is equivalent to having a power in I.

(ii) An element r in the RHS is one with rmj ∈ Ij for some mj ∈N

(for each j), hence with r∑j mj ∈ I1 · · · In ( =⇒ r ∈ LHS). An element
in the LHS belongs to the middle term since I1 · · · In ⊂ I1 ∩ · · · ∩ In.
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An element r in the middle term has rm ∈ ∩j Ij hence belongs to the
RHS.

(iii) We have LHS ⊂ RHS since Im ⊂ I. For the converse, if rm ∈ I
then rmn ∈ In. (iv) is obvious. �

For one more result related to IV.C.1, consider the case where the
multiplicative subset S is the intersection of complements of prime
ideals P1, . . . , Pn. Then it turns out that the maximal elements of S

are precisely the Pi:

IV.C.8. PROPOSITION (“Prime avoidance lemma”). Given prime
ideals P1, . . . , Pn ⊂ R, any ideal I ⊂ P1 ∪ · · · ∪ Pn is contained in some Pj.

PROOF. Inductively assume the result for fewer than n primes.
Then the only way it can fail for n primes is if I 6⊂ Uj := ∪i 6=jPi for
each j. Suppose this, pick elements ıj ∈ I\(I ∩ Uj) ⊂ I ∩ Pj (“only
in Pj”), and put ı := ı1 · · · ın−1 + ın ∈ I ⊂ P1 ∪ · · · ∪ Pn. Clearly
ı ∈ Pi0 for some i0. If i0 < n, then (ı1 · · · ın−1 ∈ Pi0 =⇒ ) ın ∈ Pi0
yields a contradiction. If i0 = n, then we get ı1 · · · ın−1 ∈ Pn, which
contradicts primality of Pn (since it doesn’t contain ı1, . . . , ın−1). �

IV.C.9. REMARK. The reason for the name is the contrapositive
statement: if I 6⊂ P1, . . . , Pn, then there exists a ∈ I avoiding all the
primes: a /∈ P1 ∪ · · · ∪ Pn.

To get a feel for what this says in an “algebro-geometric” setting,
think of R = C[x1, . . . , xn] as the “ring of regular functions on Cn”,
and let I be an ideal comprising functions whose common vanish-
ing locus is a curve C ⊂ Cn (1-dimensional variety). If each Pj is
(say) a maximal ideal, comprising functions whose common vanish-
ing locus is a single point qj ∈ Cn, then I 6⊂ Pj means that there is a
function f j vanishing on C that doesn’t vanish on qj, i.e. qj /∈ C. What
IV.C.8 then tells us is that there exists a single function f vanishing
on C with f (qi) 6= 0 (∀i).

Primes and finite generation.
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IV.C.10. PROPOSITION. An ideal which is maximal in the set of non-
finitely-generated ideals is prime.

PROOF. Suppose P is maximal in this set, a1, a2 /∈ P, and a1a2 ∈
P; we aim for a contradiction. By maximality of P, P + (aj) is finitely
generated, taking the form (p1j + r1jaj, . . . , pnj + rnjaj) with pij ∈ P.

Define an ideal J := {r ∈ R | ra1 ∈ P}; since a1a2 ∈ P, we have
(pi2 + ri2a2)a1 = pi2a1 + ri2a2a1 ∈ P (∀i) =⇒ (P () P + (a2) ⊂ J. By
maximality of P, J is finitely generated; write J = (1, . . . , m).

Given x ∈ P, we have x ∈ P + (a1)

=⇒ ∃{si}n
i=1 ⊂ R s.t. x = ∑i si(pi1 + ri1a1) = ∑i si pi1 + ∑i siri1a1

=⇒ (∑i siri1)a1 = x−∑i si pi1 ∈ P

=⇒ ∑i siri1 ∈ J (by defn of J)

=⇒ ∃{tk}m
k=1 ∈ R s.t. ∑i siri1 = ∑k tk k

=⇒ x = ∑i si pi1 + ∑k tk ka1,

whence P = (p11, . . . , pn1, 1a1, . . . , ma1), which is absurd. �

This last result allows us to connect prime ideals to the ACC,
strengthening the equivalence between Noetherianity and finite gen-
eration of all ideals in IV.B.10:

IV.C.11. THEOREM (Cohen). R is Noetherian ⇐⇒ every prime ideal
is finitely generated.

PROOF. [Prefatory note: only the “ ⇐= ” direction is new. In-
tuitively, we might expect it to be true (from our experience with
number rings) by decomposing arbitrary ideals as products of prime
ideals, obtaining f.g. of the former from f.g. of the latter, and apply-
ing IV.B.10. But this doesn’t work, because general ideals in fairly
simple Noetherian rings like C[x, y] fail to decompose as products of
primes. So the proof looks completely different.]
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Assume that all primes are f.g., and suppose the set S := {I ⊂
R | I non-f.g.} is nonempty. Then it is partially ordered by inclu-
sion; and for any chain {Iα} ⊂ S, the union ∪α Iα =: I is an ideal
containing every Iα.

Suppose I is f.g.: if I = (r1, . . . , rk), then each generator is in some
Iα. By the total ordering on ideals in the chain, the {rk} all belong
to some Iα0 . But then I lies inside that Iα0 , so I = Iα0 is not f.g., a
contradiction.

So every chain in S has an upper bound in S, and we may apply
Zorn to obtain a maximal element P ∈ S. This is prime by IV.C.10.
But then by hypothesis, it is f.g., a contradiction. So S = ∅. �


