## IV.D. Primary decomposition

Recall that in the passage from UFDs like $\mathbb{Z}[\sqrt{-1}]$ to general rings of integers $\mathcal{O}_{K}$, we were able to recover a version of unique factorization for ideals. For instance, in $\mathbb{Z}[\sqrt{-5}]$, while 6 factors nonuniquely into irreducibles, the corresponding principal ideal (6) factors uniquely into a product of (non-principal) primes like $(2,1+$ $\sqrt{-5})$. We would like to have a similar result for ideals in arbitrary Noetherian rings.

However, in the proof of IV.C.11, it was mentioned that in many Noetherian rings, ideals don't decompose as products of primes. Consider $I=\left(x^{2}, y\right) \subset \mathbb{C}[x, y]$; then $\operatorname{Rad}(I) \supseteq(x, y)$ by IV.C.5, while maximality of $(x, y)$ and properness of $\operatorname{Rad}(I)$ (which e.g. doesn't contain 1 ) force equality. So the only prime ideal containing $I$ is $(x, y)$, of which $I$ is clearly not a power. This suggests that we need to consider decompositions into a somewhat more general class of ideals.

There are problems even in the case of radical ideals. Consider $I=(x, y z) \subset \mathbb{C}[x, y, z]$; this is the intersection of the primes $P=$ $(x, y)$ and $Q=(x, z)$. But it is not their product $P Q=\left(x^{2}, x y, x z, y z\right)$ (which is strictly smaller), and in fact it cannot be a product of primes at all (why?). So perhaps we should consider decomposing ideals as intersections instead of products. ${ }^{3}$

The larger class of ideals we will need is the following:

## IV.D.1. Definition. An ideal $Q \subsetneq R$ is primary if

$$
a b \in Q \text { and } a \notin Q \Longrightarrow b^{n} \in Q \text { for some } n .
$$

(Equivalently: $a b \in Q$ and $b \notin \operatorname{Rad}(Q) \Longrightarrow a \in Q$.)
IV.D.2. Examples. (i) In $R=\mathbb{Z}$, the primary ideals are the $\left(p^{t}\right)$ :

[^0]If $a b \in\left(p^{t}\right)$, then $a b=m p^{t}$; and if $p^{t} \nmid a$, then some power of $p$ divides $b$ by unique factorization in $\mathbb{Z}$. Hence a power of $b$ is divisible by $p^{t}$. This shows that $\left(p^{t}\right)$ is primary.

On the other hand, if $I=(m)$ with $m=\prod_{i=1}^{k} p_{i}^{t_{i}}$ ( $p_{i}$ distinct primes, $k>1$ ), then taking $a=\prod_{i=2}^{k} p_{i}^{t_{i}}$ and $b=p_{1}^{t_{1}}$, no power of $b$ is in $I$ even though $a \notin I$ and $a b \in I$.
(ii) In $R=\mathbb{C}[x, y], I=\left(x^{2}, y\right)$ is a primary ideal, whereas $P=$ $(x, y)$ is prime. In fact, the latter is maximal since $R / P=\mathbb{C}$ is a field; while $x \notin I$ (but $\left.x^{2} \in I\right) \Longrightarrow I$ not prime.

To see that $I$ is primary, note that $f g \in I \Longrightarrow f g=x^{2} F+y G$ $(F, G \in R)$, and $f \notin I \Longrightarrow f(0,0) \neq 0$ or $f(0,0)=0 \neq f_{x}(0,0)$. It follows that $g(0,0)=0$, hence $g(x, y)=x h_{1}(x, y)+y h_{2}(x, y)\left(h_{i} \in\right.$ $R) \Longrightarrow g^{2}=x^{2} h_{1}^{2}+y\left\{2 x h_{1} h_{2}+y h_{2}^{2}\right\} \in I$.
IV.D.3. Proposition. If $Q$ is primary, then $\operatorname{Rad}(Q)$ is prime.

Proof. Given $a b \in \operatorname{Rad}(Q)$ and $a \notin \operatorname{Rad}(Q)$, we have (for some $n \in \mathbb{N}) a^{n} b^{n}=(a b)^{n} \in Q$ and $a^{n} \notin Q$. Since $Q$ is primary, we have $\left(b^{n}\right)^{m} \in Q$ for some $m$, hence $b \in \operatorname{Rad}(Q)$.

Writing $P:=\operatorname{Rad}(Q)$, we say that $Q$ is $P$-primary.
IV.D.4. ExAmples. (i) $\operatorname{In} \mathbb{Z},(27)$ is (3)-primary.
(ii) In $\mathbb{C}[x, y],\left(x^{2}, y\right)$ is $(x, y)$-primary.
(iii) If $I$ is an ideal in a commutative ring $R$ with $\operatorname{Rad}(I)$ a maximal ideal, then $I$ is primary. Indeed, given $a b \in I$, with $b \notin \operatorname{Rad}(I)$, we have that (since $\operatorname{Rad}(I)$ is the only maximal ideal containing $I$ ) no maximal ideal contains both $I$ and $b$. So $I+(b)=R \Longrightarrow$ $(a)=a(I+(b)) \subset I+(a b)=I \Longrightarrow a \in I$.
(iv) In a ring of integers $\mathcal{O}_{K}$, any prime ideal is maximal (cf. I.M.28). So if an ideal $I \subset \mathcal{O}_{K}$ has prime radical $P:=\operatorname{Rad}(I)$, then $I$ is primary. Again, $P$ is the only prime ideal containing/dividing $I$, and so by unique ideal factorization in $\mathcal{O}_{K}, I=P^{k}$ for some $k$.
IV.D.5. WARNING. The converse of IV.D. 3 is false. For example, in $R=\mathbb{C}[x, y], I=\left(x y, y^{2}\right)$ is not primary: $y x \in I$ and $y \notin I$, but no power of $x$ is in $I$. However, $\operatorname{Rad}(I)=(x y, y)=(y)$ is prime.

In fact, even a power of a (non-maximal) prime ideal can fail to be primary (HW).
IV.D.6. Proposition. Given $Q, P \subset R$ ideals,

$$
Q \text { is P-primary } \Longleftrightarrow\left\{\begin{array}{c}
Q \subset P \subset \operatorname{Rad}(Q), \text { and } \\
a b \in Q, a \notin Q \Longrightarrow b \in P
\end{array}(*)\right.
$$

Proof. Note that the LHS is actually three statements: that $P$ is prime, $Q$ is primary, and $\operatorname{Rad}(Q)=P$.
$(\Longleftarrow):$ By $(*)$, if $a, b \in Q$ and $a \notin Q$, then $b \in P \subset \operatorname{Rad}(Q)$ hence $b^{n} \in Q$; and so $Q$ is primary. It remains to show that $\operatorname{Rad}(Q) \subset P$. Given $b \in \operatorname{Rad}(Q)$, let $n$ be the minimal exponent for which $b^{n} \in Q$. If $n=1$, then $b \in Q \subset P$ and we are done. If $n>1$, then by minimality $b^{n-1} \notin Q$, while $b^{n-1} b=b^{n} \in Q$; and $(*)$ gives $b \in P$.
$(\Longrightarrow):$ We have $Q \subset \operatorname{Rad}(Q)=P$; and if $a b \in Q$ and $a \notin Q$, then $b^{n} \in Q \Longrightarrow b \in \operatorname{Rad}(Q)=P$.
IV.D.7. LEMMA. If $Q_{1}, \ldots, Q_{n}$ are P-primary ideals, then $\cap_{i} Q_{i}$ is $P$ primary.

Proof. Given $\operatorname{Rad}\left(Q_{i}\right)=P(\forall i)$, by IV.C.7(ii) we already know that $\operatorname{Rad}\left(\cap_{i} Q_{i}\right)=\cap_{i} \operatorname{Rad}\left(Q_{i}\right)=\cap_{i} P=P$. (But we still have to show that $\cap_{i} Q_{i}$ is primary!) If $a b \in \cap_{i} Q_{i}$ but $a \notin \cap_{i} Q_{i}$, then for some $i$ we have $a \notin Q_{i}$ (and $a b \in Q_{i}$ ) hence $b \in P$ by IV.D.6 $(\Longrightarrow)$ for $Q_{i}$. Now applying IV.D.6 $(\Longleftarrow)$ for $\cap_{i} Q_{i}$ shows the latter is indeed ( $P-$ ) primary.

We are now ready to introduce the more general notion of decomposition that we will seek.
IV.D.8. Definition. An ideal $I \subset R$ has a primary decomposition if $I=Q_{1} \cap \cdots \cap Q_{n}$ with each $Q_{i}$ primary. This decomposition is reduced if (i) no $Q_{i}$ contains $\cap_{j \neq i} Q_{j}$ and (ii) the radicals $\operatorname{Rad}\left(Q_{i}\right)$ are all distinct. The prime ideals $P_{i}:=\operatorname{Rad}\left(Q_{i}\right)$ are called the associated primes of the decomposition.

For brevity, I will use the abbreviations PD and RPD.
IV.D.9. Proposition. If an ideal I has a PD, then it has an RPD.

Proof. If (i) in IV.D. 8 fails for some $Q_{i}$, i.e. $Q_{i} \supset \cap_{j \neq i} Q_{j}$, then removing $Q_{i}$ does not change the full intersection. Assume we have made such removals, so that (i) holds.

To deal with (ii), suppose that (say) $Q_{1}$ and $Q_{2}$ are both $P$-primary (i.e. have the same radical). Without affecting the full intersection, we can replace them by $Q_{1} \cap Q_{2}$, which is $P$-primary by IV.D.7.

The main result, to be proved below in a more general context, is:
IV.D.10. THEOREM. Every (proper) ideal of a (commutative) Noetherian ring has an RPD, and this is unique up to reordering of factors provided the associated primes are all isolated (no $P_{i}$ contains any $P_{j}$ ).

In the event that some $P_{i}$ contains one of the other associated primes, it is called an embedded prime, and then the corresponding $Q_{i}$ in the decomposition is not unique (but $P_{i}$ itself is), see IV.D. 17 below.
IV.D.11. Examples. (i) Of course, the simplest example of an RPD is $\left(p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}\right)=\left(p_{1}^{n_{1}}\right) \cap \cdots \cap\left(p_{k}^{n_{k}}\right)$ in $R=\mathbb{Z}$, with associated primes $\left(p_{i}\right)$.
(ii) If $R=\mathbb{C}[x, y]$, we can already get examples where the issue regarding embedded primes and non-uniqueness shows up: two RPDs for the ideal $I=\left(x y, y^{2}\right)$ are $(y) \cap\left(x, y^{2}\right)$ and $(y) \cap\left(x+y, y^{2}\right)$. Here the associated primes are $(y)$ and $(x, y)$, the latter being "embedded". (This terminology comes from what the ideal represents in geometrically, which is the $x$-axis "union" an extra copy of the origin, a so-called "embedded point".)

## Primary modules.

IV.D.12. Definition. Let $M$ be an $R$-module. A proper submodule $A \subsetneq M$ is primary if
(IV.D.13)

$$
r \in R, m \notin A, r m \in A \Longrightarrow r^{n} M \subset A \text { for some } n \in \mathbb{Z}_{>0} .
$$

(Equivalently, $\operatorname{Rad}(\operatorname{ann}(M / A))=\{r \in R \mid \exists \mu \in M / A$ s.t. $r \mu=0\}$. That is, the elements a power of which annihilates $M / A$ are the elements which kill some nonzero element of $M / A$.)

In the case where $M$ is $R$ viewed as an $R$-module, (IV.D.13) says exactly that $A$ is a primary ideal. More generally:
IV.D.14. PROPOSITION. If a proper submodule $A \subsetneq M$ is primary, then $Q_{A}:=\{r \in R \mid r M \subset A\}(=\operatorname{ann}(M / A))$ is a primary ideal.

Proof. First, $1 \notin Q_{A} \Longrightarrow Q_{A} \neq R$; so $Q_{A}$ is a proper ideal. Since

$$
\begin{aligned}
r s \in Q_{A} \text { and } s \notin Q_{A} & \Longrightarrow r s M \subset A \text { and } s M \not \subset A \\
& \Longrightarrow \exists m \in M \text { s.t. } s m \notin A \text { and } r(s m) \in A \\
& \Longrightarrow{ }_{\text {(IV.D.13) }} r^{n} \in Q_{A},
\end{aligned}
$$

$Q_{A}$ satisfies IV.D.1.
IV.D.15. Definition. (i) Suppose $A \subset M$ is primary, and put $P:=\operatorname{Rad}\left(Q_{A}\right)(=\operatorname{Rad}(\operatorname{ann}(M / A)))$; we say that $A$ is $P$-primary.
(ii) A submodule $N \subset M$ has a primary decomposition if $N=$ $A_{1} \cap \cdots \cap A_{n}$ with each $A_{i}$ primary. Writing $P_{i}:=\operatorname{Rad}\left(Q_{A_{i}}\right)$, this primary decomposition is reduced if the $P_{i}$ are distinct and no $A_{i}$ contains $A_{1} \cap \cdots \cap \widehat{A_{i}} \cap \cdots \cap A_{n}$. The $P_{i}$ are again called associated primes.
IV.D.16. Proposition. If $N$ has a $P D$, then it has an $R P D$.

Proof. See the proof of IV.D.9. The main new point is that we need to know the intersection $A \cap B$ of two $P$-primary modules is a $P$-primary module. First note that $Q_{A \cap B}=Q_{A} \cap Q_{B}$, which is $P$ primary by IV.D. 7 since $Q_{A}$ and $Q_{B}$ are. Now, given $r m \in A \cap B$ with $m \notin A \cap B$, we have $r m \in A$ and (say) $m \notin A$, hence (by (IV.D.13)) $r^{n} \in Q_{A}$ and thus $r \in \operatorname{Rad}\left(Q_{A}\right)=P=\operatorname{Rad}\left(Q_{A \cap B}\right)$. But then we have a power $r^{m} \in Q_{A \cap B}$ whence $r^{m} M \subset A \cap B$.

We are now ready to prove a uniqueness result for RPDs.
IV.D.17. THEOREM. (i) Let $N \subsetneq M$ be an $R$-submodule with two RPDs $A_{1} \cap \cdots \cap A_{k}=N=A_{1}^{\prime} \cap \cdots \cap A_{\ell}^{\prime}$, with $A_{i} P_{i}$-primary and $A_{j}^{\prime}$ $P_{j}^{\prime}$-primary. Then $k=\ell$ and, up to reordering, $P_{i}=P_{i}^{\prime}(\forall i)$.
(ii) If $P_{i}$ is an isolated prime (i.e. contains no other $P_{j}$ ), then in addition we get $A_{i}=A_{i}^{\prime}$.

Proof. (i) We may assume that $P_{1}$ is maximal (under inclusion) in $\left\{P_{1}, \ldots, P_{\ell}^{\prime}\right\}$. Suppose that no $P_{j}^{\prime}=P_{1}$. Then $P_{1} \not \subset P_{j}^{\prime}(\forall j)$; and $P_{1} \not \subset P_{i}(\forall i>1)$ by definition (i.e. IV.D.15(ii)). So by the Prime Avoidance Lemma, $P_{1} \not \subset P_{2} \cup \cdots \cup P_{k} \cup P_{1}^{\prime} \cup \cdots \cup P_{\ell}^{\prime}=: ~ U$.

Let $r \in P_{1} \backslash\left(P_{1} \cap \mathrm{U}\right)$. Then $r^{n} M \subset A_{1}$ for some $n$ and we set

$$
N^{*}:=\left\{x \in M \mid r^{n} x \in N\right\} \subset N .
$$

If $k=1$ then $N=A_{1} \Longrightarrow N^{*}=M \Longrightarrow N=M$ yields a contradiction. If $k>1$ then $A_{2} \cap \cdots \cap A_{k} \subset N^{*}$ and $A_{1}^{\prime} \cap \cdots \cap A_{\ell}^{\prime} \subset$ $N^{*}$. I claim these inclusions are equalities. Consider $x \notin A_{2} \cap \cdots \cap$ $A_{k}$. By (IV.D.13), $r^{n} x \in A_{i(>1)}$ would imply $r^{m n} \in Q_{A_{i}}$ hence $r \in P_{i}$ (contradicting the choice of $r$ ), so $r^{n} x \notin A_{2} \cap \cdots \cap A_{k}$ hence $r^{n} x \notin N$ and $x \notin N^{*}$. Conclude that $N^{*}=A_{2} \cap \cdots \cap A_{k}$. Similarly one shows $N^{*}=A_{1}^{\prime} \cap \cdots \cap A_{\ell}^{\prime}(=N)$. But then $A_{2} \cap \cdots \cap A_{k}=N^{*}=N=$ $A_{1} \cap \cdots \cap A_{k} \subset A_{1}$ contradicts the definition of RPD.

We are forced by these contradictions to admit that $P_{1}=P_{j}^{\prime}$ for some $j$, say $j=1$. Using $A_{2} \cap \cdots \cap A_{k}=N^{*}=A_{2}^{\prime} \cap \cdots \cap A_{\ell}^{\prime}$ we reduce by induction to the base case $k=1$.

In the $k=1$ case, if $\ell>1$ a symmetric argument shows each $P_{j>1}^{\prime}$ must equal something on the other side, and $P_{1}$ is the only possibility. But then $P_{2}^{\prime}=P_{1}=P_{1}^{\prime}$ contradicts the definition of RPD again, and so $\ell=1$.
(ii) Suppose $P_{1}$ is isolated, and $A_{1}, A_{1}^{\prime}$ are $P_{1}$-primary. For each $j \geq 2, \exists r_{j} \in P_{j} \backslash\left(P_{j} \cap P_{1}\right) \Longrightarrow t:=r_{2} \cdots r_{k} \in\left(P_{2} \cap \cdots \cap P_{k}\right) \backslash\left(P_{1} \cap\right.$ $\cdots \cap P_{k}$ ). Since $A_{j}$ [resp. $A_{j}^{\prime}$ ] is $P_{j}$-primary, $\exists n_{j}$ [resp. $m_{j}$ ] with $t^{n_{j}} M \subset A_{j}\left[\right.$ resp. $\left.t^{m_{j}} M \subset A_{j}^{\prime}\right]$ for $j \geq 2$. Put $n:=\max \left(\left\{n_{j}, m_{j}\right\}_{j=2}^{k}\right)$, and define $\tilde{N}:=\left\{x \in M \mid t^{n} x \in N\right\}$.

I claim that $A_{1}=\tilde{N}$. Given $x \in A_{1}$, we have $t^{n} x \in A_{1} \cap \cdots \cap$ $A_{k}=N \Longrightarrow x \in \tilde{N}$. Conversely, $x \in \tilde{N} \Longrightarrow t^{n} x \in N \subset A_{1}$. Since $A_{1}$ is $P_{1}$-primary and $t \notin P_{1}$, we have $t^{m} M \not \subset A_{1}(\forall m \geq 0)$. Now if $x \notin A_{1}$, then (since $A_{1}$ is primary) $t^{n} x \in A_{1} \Longrightarrow t^{n q} M \subset A_{1}$, a contradiction. So $x \in A_{1}$ and the claim is proved.

Similarly, we get $A_{1}^{\prime}=\tilde{N}$. So $A_{1}^{\prime}=A_{1}$ and we are done.

Turning to the existence of RPDs, we recall that finitely-generated modules over a Noetherian ring, including the ring itself, satisfy the ACC. In particular, IV.D. 10 follows immediately from the next result together with IV.D.17.
IV.D.18. Theorem. If $M$ satisfies the $A C C$, then every $N \subsetneq M$ has an RPD.

Proof. Say $S:=\{N \subset M \mid N$ has no PD $\}$ is nonempty. The ACC yields an upper bound for each chain, hence a maximal $N \in \mathbb{S}$. Since $N$ is certainly non-primary, there exist $r \in R$ and $m \in M \backslash N$ such that $r m \in N$ and $r^{n} M \not \subset N(\forall n \in \mathbb{N})$.

Define an ascending chain by $M_{n}:=\left\{x \in M \mid r^{n} x \in N\right\}$; in particular, $M_{0}=N$ and $M_{1} \ni m$. By the ACC, this chain stabilizes at (say) $k$. Set $\tilde{N}:=\left\{x \in M \mid x=r^{k} y+z\right.$ for some $\left.y \in M, z \in N\right\}$. Clearly $N \subset M_{k} \cap \tilde{N}$.

Conversely, given $x \in M_{k} \cap \tilde{N}$, we have $x=r^{k} y+z$ and also $r^{k} x \in N$, hence

$$
\begin{aligned}
& r^{2 k} y=r^{k}\left(r^{k} y\right)=r^{k}(x-z)=r^{k} x-r^{k} z \in N \\
& \Longrightarrow y \in M_{2 k}=M_{k} \Longrightarrow r^{k} y \in N \Longrightarrow x=r^{k} y+z \in N . \text { So } \\
& M_{k} \cap \tilde{N}=N .
\end{aligned}
$$

Now since $m \in M_{k} \backslash N$ and $r^{k} M \not \subset M$, we have $N \subsetneq M_{k} \subsetneq M$ and $N \subsetneq \tilde{N} \subsetneq M$. By maximality of $N$ in $\mathrm{S}, \tilde{N}$ and $M_{k}$ must have PDs. But then their intersection (namely $N$ ) does, by concatenating the PDs, a contradiction. So $S=\varnothing$ and IV.D. 16 adds the final touch.

## Krull intersection theorem.

We conclude with an application of primary decomposition. This will require a couple of lemmas.
IV.D.19. Lemma. Let $M$ be a finitely generated $R$-module, and $I:=$ $\operatorname{ann}(M) \subset R$. Then $M$ is Noetherian [resp. Artinian] $\Longleftrightarrow R / I$ is Noetherian [resp. Artinian].

Proof. $(\Longleftarrow)$ : Because $I$ annihilates $M, M$ may be regarded also as an $R / I$-module. Since $R / I$ satisfies the ACC [resp. DCC], so does $M$ as $R / I$-module (by IV.B.8). As $R$-submodules are also $R / I$ submodules, they also satisfy the ACC [resp. DCC].
$(\Longrightarrow):$ Writing $M=\sum_{j=1}^{n} R m_{j}$ (by finite generation), we have $I=$ $\cap_{j=1}^{n} \operatorname{ann}\left(R m_{j}\right)=: \cap_{j=1}^{n} I_{j}$. Consider the natural $R$-module homomorphisms

$$
R / I \stackrel{\theta}{\hookrightarrow} \times{ }_{j=1}^{n} R / I_{j} \stackrel{\cong}{\rightrightarrows} \oplus_{j=1}^{n} R m_{j} .
$$

As submodules of $M$, the $R / I_{j}$ satisfy the ACC [resp. DCC]. Hence, so does the submodule $R / I$ of their direct sum (cf. IV.B.7).
IV.D.20. Lemma. Let $P \subset R$ be a prime ideal, $M$ a Noetherian $R$ module, and $N \subset M$ a P-primary submodule. Then there exists $m \in \mathbb{N}$ such that $P^{m} M \subset N$. (In particular, any P-primary ideal in a Noetherian ring contains some power of $P$.)

Proof. Set $I:=\operatorname{ann}(M)$ and $\bar{R}:=R / I$, so that $M, N$ may be viewed as $\bar{R}$-modules. We have

$$
I \subset \operatorname{ann}(M / N) \subset P=\operatorname{Rad}(\operatorname{ann}(M / N))
$$

Clearly $N$ is a $\bar{P}$-primary $\bar{R}$-submodule, and $\bar{P}$ consists of the elements of $\bar{R}$ some power of which kills $M / N$ (knocks $M$ into $N)$.

Now $M$ Noetherian $\stackrel{\text { IV.D. } 19}{\Longrightarrow} \bar{R}$ Noetherian $\stackrel{\text { IV.C. } 11}{\Longrightarrow} \bar{P}$ finitely generated $\Longrightarrow \bar{P}=\left(\bar{p}_{1}, \ldots, \bar{p}_{s}\right)$. So (for each i) $\exists n_{i} \in \mathbb{N}$ such that $\bar{p}_{i}^{n_{i}} M \subset N$. Setting $m=n_{1}+\cdots+n_{s}$, we have $\bar{P}^{m} M \subset N$ hence $P^{m} M \subset N$.
IV.D.21. Krull Intersection Theorem (v. 1). Given an ideal $I \subset R$ and a Noetherian $R$-module $M$, set $N=\cap_{n \geq 1} I^{n} M$. Then $I N=N$.

Proof. If $I N=M$, then $M=I N \subset N \Longrightarrow N=M=I N$. So we may assume $I N \neq M$, and let $I N=N_{1} \cap \cdots \cap N_{s}$ be a RPD with associated primes $P_{1}, \ldots, P_{s}$.

Suppose $I \subset P_{i}$ (for some $i$ ); then IV.D. $20 \Longrightarrow P_{i}^{m} M \subset N_{i}$ (for some $m) \Longrightarrow N=\cap_{n \geq 1} I^{n} M \subset I^{m} M \subset P_{i}^{m} M \subset N_{i}$.

On the other hand, if $I \not \subset P_{i}$, then let $r \in I \backslash\left(I \cap P_{i}\right)$. If $N \not \subset N_{i}$, then $\exists v \in N \backslash\left(N \cap N_{i}\right)$; and since $r v \in I N \subset N_{i}, v \notin N_{i}$, and $N_{i}$ is primary, we must have $r^{n} M \subset N_{i}$ (for some $n$ ) hence $r \in P_{i}$. This contradiction means that $N \subset N_{i}$.

So either way, $N \subset N_{i}$. Since $i$ was arbitrary, $N \subset \cap_{i} N_{i}=I N$ hence $N=I N$.

It will be easier to see what this means (at least for local rings) in "v. 2", after we prove Nakayama's theorem in the next section.


[^0]:    ${ }^{3}$ We discussed intersections vs. products of ideals in commutative rings in [Algebra I, III.E.13(ii)], concluding that these are equal when the ideals are pairwise coprime. (Otherwise, there are easy counterexamples like $(p)(p)=\left(p^{2}\right) \subsetneq$ $(p)=(p) \cap(p)$ in $\mathbb{Z}$.) One important case where ideals are automatically coprime is that of distinct maximal ideals $\mathfrak{m}, \mathfrak{m}^{\prime}$, since their sum contains an element not in (say) $\mathfrak{m}$ hence must be the whole ring.

