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IV.D. Primary decomposition

Recall that in the passage from UFDs like Z[\/—1] to general
rings of integers Ok, we were able to recover a version of unique
factorization for ideals. For instance, in Z[v/—5], while 6 factors non-
uniquely into irreducibles, the corresponding principal ideal (6) fac-
tors uniquely into a product of (non-principal) primes like (2,1 +
v/—5). We would like to have a similar result for ideals in arbitrary
Noetherian rings.

However, in the proof of IV.C.11, it was mentioned that in many
Noetherian rings, ideals don’t decompose as products of primes. Con-
sider I = (x%,y) C C[x,y]; then Rad(I) 2 (x,y) by IV.C.5, while
maximality of (x,y) and properness of Rad(I) (which e.g. doesn’t
contain 1) force equality. So the only prime ideal containing I is (x,y),
of which I is clearly not a power. This suggests that we need to con-
sider decompositions into a somewhat more general class of ideals.

There are problems even in the case of radical ideals. Consider
I = (x,yz) C C[x,y,z]; this is the intersection of the primes P =
(x,y) and Q = (x, z). But it is not their product PQ = (x?, xy, xz, yz)
(which is strictly smaller), and in fact it cannot be a product of primes
at all (why?). So perhaps we should consider decomposing ideals as
intersections instead of products.

The larger class of ideals we will need is the following:

IV.D.1. DEFINITION. Anideal Q C R is primary if
ab € Qanda ¢ Q — b" € Q for some n.

(Equivalently: ab € Qand b ¢ Rad(Q) = a € Q.)

IV.D.2. EXAMPLES. (i) In R = Z, the primary ideals are the (p'):

3We discussed intersections vs. products of ideals in commutative rings in
[Algebra I, IILE.13(ii)], concluding that these are equal when the ideals are pair-
wise coprime. (Otherwise, there are easy counterexamples like (p)(p) = (p?) <
(p) = (p) N (p) in Z.) One important case where ideals are automatically coprime
is that of distinct maximal ideals m, m’, since their sum contains an element not in

(say) m hence must be the whole ring.
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If ab € (p'), then ab = mp'; and if p' t a, then some power
of p divides b by unique factorization in Z. Hence a power of b is
divisible by p!. This shows that (p') is primary.

On the other hand, if I = (m) with m = JT*, pf" (p; distinct
primes, k > 1), then taking a = [T5_, pf" and b = p?, no power of b
isin I even thougha ¢ I and ab € 1.

(ii) In R = C[x,y], I = (x%y) is a primary ideal, whereas P =
(x,y) is prime. In fact, the latter is maximal since R/P = C is a field;
while x ¢ I (but x> € ) = I not prime.

To see that [ is primary, note that f¢ € | = fg = x*F +yG
(F,G€eR),and f ¢ I = f(0,0) # 0or f(0,0) = 0 # fx(0,0). It
follows that ¢(0,0) = 0, hence g(x,y) = xhi(x,y) + yha(x,y) (h; €
R) = ¢* = x?h? +y{2xhihy + yh3} € L.

IV.D.3. PROPOSITION. If Q is primary, then Rad(Q) is prime.

PROOF. Given ab € Rad(Q) and 4 ¢ Rad(Q), we have (for some
n € IN) a"b" = (ab)" € Q and a" ¢ Q. Since Q is primary, we have
(b™)™ € Q for some m, hence b € Rad(Q). O

Writing P := Rad(Q), we say that Q is P-primary.

IV.D.4. EXAMPLES. (i) In Z, (27) is (3)-primary.

(ii) In C[x,y], (x%,y) is (x,y)-primary.

(iii) If I is an ideal in a commutative ring R with Rad(I) a maxi-
mal ideal, then I is primary. Indeed, given ab € I, with b ¢ Rad(I),
we have that (since Rad(I) is the only maximal ideal containing I)
no maximal ideal contains both [ and b. So I+ (b)) = R —
(a) =a(I+ (b)) CI+(ab)=1 = a€l

(iv) In a ring of integers Ok, any prime ideal is maximal (cf.
I.M.28). So if an ideal I C Ok has prime radical P := Rad(I), then I
is primary. Again, P is the only prime ideal containing/dividing I,
and so by unique ideal factorization in Ok, I = P for some k.

IV.D.5. WARNING. The converse of IV.D.3 is false. For example,
in R = C[x,y], = (xy,y?) is not primary: yx € I and y ¢ I, but no
power of x is in I. However, Rad(I) = (xy,y) = (y) is prime.



212 IV. COMMUTATIVE RINGS

In fact, even a power of a (non-maximal) prime ideal can fail to
be primary (HW).
IV.D.6. PROPOSITION. Given Q,P C R ideals,

Q C P C Rad(Q), and
abe Q,a¢ Q = beP|x)

Qs P-primary <= {

PROOF. Note that the LHS is actually three statements: that P is
prime, Q is primary, and Rad(Q) = P.
(<= ):By (%), ifa,b € Qanda ¢ Q, thenb € P C Rad(Q) hence
b" € Q; and so Q is primary. It remains to show that Rad(Q) C P.
Given b € Rad(Q), let n be the minimal exponent for which b" € Q.
If n =1,thenb € Q C P and we are done. If n > 1, then by
minimality b"~! ¢ Q, while b"~'b = b" € Q; and (x) gives b € P.
(= ): Wehave Q C Rad(Q) = P;and ifab € Q and a ¢ Q, then
"€ Q = beRad(Q)="P. O

IV.D.7. LEMMA. If Qy, ..., Qy are P-primary ideals, then M;Q; is P-
primary.

PROOF. Given Rad(Q;) = P (Vi), by IV.C.7(ii) we already know
that Rad(N;Q;) = N;Rad(Q;) = N;P = P. (But we still have to show
that N;Q; is primary!) If ab € N;Q; but a ¢ N;Q;, then for some i
we have a ¢ Q; (and ab € Q;) hence b € P by IVD.6( = ) for
Q;. Now applying IV.D.6( <= ) for N;Q; shows the latter is indeed
(P-)primary. O

We are now ready to introduce the more general notion of de-
composition that we will seek.

IV.D.8. DEFINITION. An ideal I C R has a primary decomposi-
tionif I = Q; N --- N Qy with each Q; primary. This decomposition
is reduced if (i) no Q; contains N;;Q; and (ii) the radicals Rad(Q;)
are all distinct. The prime ideals P; := Rad(Q);) are called the associ-
ated primes of the decomposition.

For brevity, I will use the abbreviations PD and RPD.
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IV.D.9. PROPOSITION. If an ideal I has a PD, then it has an RPD.

PROOF. If (i) in IV.D.8 fails for some Q;, i.e. Q; D N;xQ;, then
removing Q; does not change the full intersection. Assume we have
made such removals, so that (i) holds.

To deal with (ii), suppose that (say) Q; and Q; are both P-primary
(i.e. have the same radical). Without affecting the full intersection,
we can replace them by Q; N Qp, which is P-primary by IV.D.7. [

The main result, to be proved below in a more general context, is:

IV.D.10. THEOREM. Every (proper) ideal of a (commutative) Noether-
ian ring has an RPD, and this is unique up to reordering of factors provided
the associated primes are all isolated (no P; contains any D).

In the event that some P; contains one of the other associated
primes, it is called an embedded prime, and then the corresponding
Q; in the decomposition is not unique (but P; itself is), see IV.D.17
below.

IV.D.11. EXAMPLES. (i) Of course, the simplest example of an
RPDis (pyt---pi*) = (pi1) N---N(p¥) in R = Z, with associated
primes (p;).

(i) If R = C[x,y], we can already get examples where the is-
sue regarding embedded primes and non-uniqueness shows up: two
RPD:s for the ideal I = (xy, y?) are (y) N (x,y?) and (y) N (x +y,y?).
Here the associated primes are (y) and (x,y), the latter being “em-
bedded”. (This terminology comes from what the ideal represents
in geometrically, which is the x-axis “union” an extra copy of the
origin, a so-called “embedded point”.)

Primary modules.

IV.D.12. DEFINITION. Let M be an R-module. A proper submod-
ule A C M is primary if
(IV.D.13)
reR, m¢ A, rme A — "M C A forsomen € Z~.



214 IV. COMMUTATIVE RINGS

(Equivalently, Rad(ann(M/A)) = {r € R| 3u € M/ A s.t. ru = 0}.
That is, the elements a power of which annihilates M/ A are the ele-
ments which kill some nonzero element of M/ A.)

In the case where M is R viewed as an R-module, (IV.D.13) says
exactly that A is a primary ideal. More generally:

IV.D.14. PROPOSITION. If a proper submodule A C M is primary,
then Q4 :={r € R|rM C A} (= ann(M/A)) is a primary ideal.

PROOF. First, 1 ¢ Q4 = Qa # R; so Q4 is a proper ideal.
Since

rseQpands ¢ Qq = rsM C AandsM ¢ A
= dm e Mst.sm¢& Aandr(sm) € A

—_—> n ,
(IV.D.lS)r € Qa
Q4 satisfies IV.D.1. O

IV.D.15. DEFINITION. (i) Suppose A C M is primary, and put
P:=Rad(Q) (= Rad(ann(M/A))); we say that A is P-primary.

(ii) A submodule N C M has a primary decomposition if N =
A;N---N A, with each A; primary. Writing P; := Rad(Qy,), this
primary decomposition is reduced if the P; are distinct and no A;
contains AN ---N 1/4\1 N ---MN Ay, The P; are again called associated

primes.
IV.D.16. PROPOSITION. If N has a PD, then it has an RPD.

PROOF. See the proof of IV.D.9. The main new point is that we
need to know the intersection A N B of two P-primary modules is
a P-primary module. First note that Q4np = Q4 N Qp, which is P-
primary by IV.D.7 since Q 4 and Qp are. Now, givenrm € AN B with
m & AN B, wehave rm € A and (say) m ¢ A, hence (by (IV.D.13))
" € Qu and thus r € Rad(Q4) = P = Rad(Qanp). But then we
have a power " € Qsnp whence r"M C AN B. O

We are now ready to prove a uniqueness result for RPDs.
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IV.D.17. THEOREM. (i) Let N C M be an R-submodule with two
RPDs AijN---NAr =N =A]N---NA), with A; P-primary and A;
Pi-primary. Then k = { and, up to reordering, P; = P; (Vi).

(ii) If P; is an isolated prime (i.e. contains no other P;), then in addition
we get A; = Al

PROOF. (i) We may assume that P; is maximal (under inclusion)
in {P;,...,P;}. Suppose that no P]-’ = P;. Then P; ¢ P]-’ (Vj); and
Py ¢ P; (Vi > 1) by definition (i.e. IV.D.15(ii)). So by the Prime
Avoidance Lemma, P; ¢ P,U---UPUPjU---UP; =:U.

Letr € P;\(P; NU). Then "M C A; for some n and we set

N :={xe M|r"x € N} C N.

Ifk =1then N = Ay = N =M = N = Myieldsa
contradiction. If k > 1then Ay N---NAy C N*and AjN---NAj, C
N*. I claim these inclusions are equalities. Consider x ¢ A, N ---N
Ag. By IV.D.13), r"'x € A;(~1) would imply ™" € Q4 hence r € P;
(contradicting the choice of ), so r""x ¢ Ao N ---N A hencer'x ¢ N
and x ¢ N*. Conclude that N* = A, N - - - N Ag. Similarly one shows
N* = Ain---NA,(= N). Butthen AoN---NA = N* =N =
A1 N---NAg C Aq contradicts the definition of RPD.

We are forced by these contradictions to admit that P; = Pj’ for
some j, say j = 1. Using Ao N---NAr = N* = ASN---NA, we
reduce by induction to the base case k = 1.

In the k = 1 case, if > 1 a symmetric argument shows each P](>1
must equal something on the other side, and P; is the only possibil-
ity. But then Pﬁ =P = P{ contradicts the definition of RPD again,
andso ¢ = 1.

(ii) Suppose P; is isolated, and A;, A} are P;-primary. For each
j>2, E|1’]' S Pj\(PjﬂPl) = t:i=719 -1} € (Pzﬁ'--ﬂpk)\(Plﬂ
-+ N Py). Since A; [resp. A;.] is Pj-primary, 3 n; [resp. m;] with
M C A; [fesp. t"iM C Aflforj > 2. Putn := max({nj,mj};.‘zz),
and define N := {x € M | t"x € N}.
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I claim that A; = N. Given x € A, we have t"x € A1 N---N
Ay =N = x € N. Conversely, x ¢ N = t"x € N C A;. Since
Ap is Py-primary and t ¢ Pj, we have "M ¢ A; (Vm > 0). Now
if x ¢ Ay, then (since Aj is primary) t"'x € A} = t"IM C Ay, a
contradiction. So x € A and the claim is proved.

Similarly, we get A} = N. So A} = A; and we are done. O

Turning to the existence of RPDs, we recall that finitely-generated
modules over a Noetherian ring, including the ring itself, satisfy the
ACC. In particular, IV.D.10 follows immediately from the next result
together with IV.D.17.

IV.D.18. THEOREM. If M satisfies the ACC, then every N C M has
an RPD.

PROOF. Say S := {N C M | N hasno PD} is nonempty. The
ACC yields an upper bound for each chain, hence a maximal N € S.
Since N is certainly non-primary, there exist r € R and m € M\N
such that rm € Nand r"M ¢ N (Vn € IN).

Define an ascending chain by M,, := {x € M | r"x € N}; in
particular, My = N and M; > m. By the ACC, this chain stabilizes
at (say) k. Set N := {x € M | x = r*y + z forsome y € M, z € N}.
Clearly N C M; N N.

Conversely, given x € M; N N, we have x = r*y + z and also
r*x € N, hence

2k

rky = *(rky) =k (x —2) = 1K

x—r'ze N

= y € My = My — rkyeN — x:rky+zeN. So
M N N =N.

Now since n € M\N and **M ¢ M, we have N C M; C M and

N ¢ N € M. By maximality of Nin G, N and M must have PDs. But

then their intersection (namely N) does, by concatenating the PDs, a

contradiction. So S = @ and IV.D.16 adds the final touch. O
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Krull intersection theorem.

We conclude with an application of primary decomposition. This

will require a couple of lemmas.

IV.D.19. LEMMA. Let M be a finitely generated R-module, and I :=
ann(M) C R. Then M is Noetherian [resp. Artinian] <= R/I is
Noetherian [resp. Artinian].

PROOF. ( <= ): Because I annihilates M, M may be regarded
also as an R/ I-module. Since R/ I satisfies the ACC [resp. DCC], so
does M as R/I-module (by IV.B.8). As R-submodules are also R/ I-
submodules, they also satisfy the ACC [resp. DCC].

(= ): Writing M = 27:1 Rm;j (by finite generation), we have I =
N jzlann(ij) =: Ni_,Ij. Consider the natural R-module homomor-
phisms

R/T < ' \R/I; 5 @ Rmj.
As submodules of M, the R/I; satisty the ACC [resp. DCC]. Hence,
so does the submodule R/ I of their direct sum (cf. IV.B.7). O

IV.D.20. LEMMA. Let P C R be a prime ideal, M a Noetherian R-
module, and N C M a P-primary submodule. Then there exists m € IN
such that P"M C N. (In particular, any P-primary ideal in a Noetherian
ring contains some power of P.)

PROOF. Set [ := ann(M) and R := R/I, so that M, N may be
viewed as R-modules. We have

I Cann(M/N) C P =Rad(ann(M/N)).

Clearly N is a P-primary R-submodule, and P consists of the ele-
ments of R some power of which kills M/ N (knocks M into N).
Now M Noetherian "2’ R Noetherian == P finitely gener-
ated =— P = (p1,...,Ps). So (for each i) In; € N such that
p;'M C N. Setting m = ny + - - -+ ng, we have P"M C N hence
P™M C N. O
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IV.D.21. KRULL INTERSECTION THEOREM (v. 1). Given an ideal
I C Rand a Noetherian R-module M, set N = N,>11"M. Then IN = N.

PROOF. If IN = M,then M = IN C N = N = M = IN. So
we may assume IN # M, and let IN = N; N --- N N; be a RPD with
associated primes Py, ..., Ps.

Suppose I C P; (for some i); then IV.D.20 = P"M C N; (for
some m) = N = N> I"M C I"M C P"M C N;.

On the other hand, if I ¢ P, thenletr € I\(INPF). If N & N;,
then 3v € N\(NNN;); and since rv € IN C N;, v ¢ N;, and N; is
primary, we must have r"M C N; (for some n) hence r € P;. This
contradiction means that N C N;.

So either way, N C N;. Since i was arbitrary, N C N;N; = IN
hence N = IN. O

It will be easier to see what this means (at least for local rings) in
“v. 2", after we prove Nakayama'’s theorem in the next section.



