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IV.D. Primary decomposition

Recall that in the passage from UFDs like Z[
√
−1] to general

rings of integers OK, we were able to recover a version of unique
factorization for ideals. For instance, in Z[

√
−5], while 6 factors non-

uniquely into irreducibles, the corresponding principal ideal (6) fac-
tors uniquely into a product of (non-principal) primes like (2, 1 +√
−5). We would like to have a similar result for ideals in arbitrary

Noetherian rings.
However, in the proof of IV.C.11, it was mentioned that in many

Noetherian rings, ideals don’t decompose as products of primes. Con-
sider I = (x2, y) ⊂ C[x, y]; then Rad(I) ⊇ (x, y) by IV.C.5, while
maximality of (x, y) and properness of Rad(I) (which e.g. doesn’t
contain 1) force equality. So the only prime ideal containing I is (x, y),
of which I is clearly not a power. This suggests that we need to con-
sider decompositions into a somewhat more general class of ideals.

There are problems even in the case of radical ideals. Consider
I = (x, yz) ⊂ C[x, y, z]; this is the intersection of the primes P =

(x, y) and Q = (x, z). But it is not their product PQ = (x2, xy, xz, yz)
(which is strictly smaller), and in fact it cannot be a product of primes
at all (why?). So perhaps we should consider decomposing ideals as
intersections instead of products.3

The larger class of ideals we will need is the following:

IV.D.1. DEFINITION. An ideal Q ( R is primary if

ab ∈ Q and a /∈ Q =⇒ bn ∈ Q for some n.

(Equivalently: ab ∈ Q and b /∈ Rad(Q) =⇒ a ∈ Q.)

IV.D.2. EXAMPLES. (i) In R = Z, the primary ideals are the (pt):

3We discussed intersections vs. products of ideals in commutative rings in
[Algebra I, III.E.13(ii)], concluding that these are equal when the ideals are pair-
wise coprime. (Otherwise, there are easy counterexamples like (p)(p) = (p2) (
(p) = (p)∩ (p) in Z.) One important case where ideals are automatically coprime
is that of distinct maximal ideals m,m′, since their sum contains an element not in
(say) m hence must be the whole ring.
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If ab ∈ (pt), then ab = mpt; and if pt - a, then some power
of p divides b by unique factorization in Z. Hence a power of b is
divisible by pt. This shows that (pt) is primary.

On the other hand, if I = (m) with m = ∏k
i=1 pti

i (pi distinct
primes, k > 1), then taking a = ∏k

i=2 pti
i and b = pt1

1 , no power of b
is in I even though a /∈ I and ab ∈ I.

(ii) In R = C[x, y], I = (x2, y) is a primary ideal, whereas P =

(x, y) is prime. In fact, the latter is maximal since R/P = C is a field;
while x /∈ I (but x2 ∈ I) =⇒ I not prime.

To see that I is primary, note that f g ∈ I =⇒ f g = x2F + yG
(F, G ∈ R), and f /∈ I =⇒ f (0, 0) 6= 0 or f (0, 0) = 0 6= fx(0, 0). It
follows that g(0, 0) = 0, hence g(x, y) = xh1(x, y) + yh2(x, y) (hi ∈
R) =⇒ g2 = x2h2

1 + y{2xh1h2 + yh2
2} ∈ I.

IV.D.3. PROPOSITION. If Q is primary, then Rad(Q) is prime.

PROOF. Given ab ∈ Rad(Q) and a /∈ Rad(Q), we have (for some
n ∈ N) anbn = (ab)n ∈ Q and an /∈ Q. Since Q is primary, we have
(bn)m ∈ Q for some m, hence b ∈ Rad(Q). �

Writing P := Rad(Q), we say that Q is P-primary.

IV.D.4. EXAMPLES. (i) In Z, (27) is (3)-primary.
(ii) In C[x, y], (x2, y) is (x, y)-primary.
(iii) If I is an ideal in a commutative ring R with Rad(I) a maxi-

mal ideal, then I is primary. Indeed, given ab ∈ I, with b /∈ Rad(I),
we have that (since Rad(I) is the only maximal ideal containing I)
no maximal ideal contains both I and b. So I + (b) = R =⇒
(a) = a(I + (b)) ⊂ I + (ab) = I =⇒ a ∈ I.

(iv) In a ring of integers OK, any prime ideal is maximal (cf.
I.M.28). So if an ideal I ⊂ OK has prime radical P := Rad(I), then I
is primary. Again, P is the only prime ideal containing/dividing I,
and so by unique ideal factorization in OK, I = Pk for some k.

IV.D.5. WARNING. The converse of IV.D.3 is false. For example,
in R = C[x, y], I = (xy, y2) is not primary: yx ∈ I and y /∈ I, but no
power of x is in I. However, Rad(I) = (xy, y) = (y) is prime.
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In fact, even a power of a (non-maximal) prime ideal can fail to
be primary (HW).

IV.D.6. PROPOSITION. Given Q, P ⊂ R ideals,

Q is P-primary ⇐⇒
{

Q ⊂ P ⊂ Rad(Q), and
ab ∈ Q, a /∈ Q =⇒ b ∈ P (∗)

PROOF. Note that the LHS is actually three statements: that P is
prime, Q is primary, and Rad(Q) = P.

(⇐= ): By (∗), if a, b ∈ Q and a /∈ Q, then b ∈ P ⊂ Rad(Q) hence
bn ∈ Q; and so Q is primary. It remains to show that Rad(Q) ⊂ P.
Given b ∈ Rad(Q), let n be the minimal exponent for which bn ∈ Q.
If n = 1, then b ∈ Q ⊂ P and we are done. If n > 1, then by
minimality bn−1 /∈ Q, while bn−1b = bn ∈ Q; and (∗) gives b ∈ P.

( =⇒ ): We have Q ⊂ Rad(Q) = P; and if ab ∈ Q and a /∈ Q, then
bn ∈ Q =⇒ b ∈ Rad(Q) = P. �

IV.D.7. LEMMA. If Q1, . . . , Qn are P-primary ideals, then ∩iQi is P-
primary.

PROOF. Given Rad(Qi) = P (∀i), by IV.C.7(ii) we already know
that Rad(∩iQi) = ∩iRad(Qi) = ∩iP = P. (But we still have to show
that ∩iQi is primary!) If ab ∈ ∩iQi but a /∈ ∩iQi, then for some i
we have a /∈ Qi (and ab ∈ Qi) hence b ∈ P by IV.D.6( =⇒ ) for
Qi. Now applying IV.D.6( ⇐= ) for ∩iQi shows the latter is indeed
(P-)primary. �

We are now ready to introduce the more general notion of de-
composition that we will seek.

IV.D.8. DEFINITION. An ideal I ⊂ R has a primary decomposi-
tion if I = Q1 ∩ · · · ∩ Qn with each Qi primary. This decomposition
is reduced if (i) no Qi contains ∩j 6=iQj and (ii) the radicals Rad(Qi)

are all distinct. The prime ideals Pi := Rad(Qi) are called the associ-
ated primes of the decomposition.

For brevity, I will use the abbreviations PD and RPD.
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IV.D.9. PROPOSITION. If an ideal I has a PD, then it has an RPD.

PROOF. If (i) in IV.D.8 fails for some Qi, i.e. Qi ⊃ ∩j 6=iQj, then
removing Qi does not change the full intersection. Assume we have
made such removals, so that (i) holds.

To deal with (ii), suppose that (say) Q1 and Q2 are both P-primary
(i.e. have the same radical). Without affecting the full intersection,
we can replace them by Q1 ∩Q2, which is P-primary by IV.D.7. �

The main result, to be proved below in a more general context, is:

IV.D.10. THEOREM. Every (proper) ideal of a (commutative) Noether-
ian ring has an RPD, and this is unique up to reordering of factors provided
the associated primes are all isolated (no Pi contains any Pj).

In the event that some Pi contains one of the other associated
primes, it is called an embedded prime, and then the corresponding
Qi in the decomposition is not unique (but Pi itself is), see IV.D.17
below.

IV.D.11. EXAMPLES. (i) Of course, the simplest example of an
RPD is (pn1

1 · · · p
nk
k ) = (pn1

1 ) ∩ · · · ∩ (pnk
k ) in R = Z, with associated

primes (pi).
(ii) If R = C[x, y], we can already get examples where the is-

sue regarding embedded primes and non-uniqueness shows up: two
RPDs for the ideal I = (xy, y2) are (y) ∩ (x, y2) and (y) ∩ (x + y, y2).
Here the associated primes are (y) and (x, y), the latter being “em-
bedded”. (This terminology comes from what the ideal represents
in geometrically, which is the x-axis “union” an extra copy of the
origin, a so-called “embedded point”.)

Primary modules.

IV.D.12. DEFINITION. Let M be an R-module. A proper submod-
ule A ( M is primary if
(IV.D.13)

r ∈ R, m /∈ A, rm ∈ A =⇒ rnM ⊂ A for some n ∈ Z>0.
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(Equivalently, Rad(ann(M/A)) = {r ∈ R | ∃µ ∈ M/A s.t. rµ = 0}.
That is, the elements a power of which annihilates M/A are the ele-
ments which kill some nonzero element of M/A.)

In the case where M is R viewed as an R-module, (IV.D.13) says
exactly that A is a primary ideal. More generally:

IV.D.14. PROPOSITION. If a proper submodule A ( M is primary,
then QA := {r ∈ R | rM ⊂ A} (= ann(M/A)) is a primary ideal.

PROOF. First, 1 /∈ QA =⇒ QA 6= R; so QA is a proper ideal.
Since

rs ∈ QA and s /∈ QA =⇒ rsM ⊂ A and sM 6⊂ A

=⇒ ∃m ∈ M s.t. sm /∈ A and r(sm) ∈ A

=⇒
(IV.D.13)

rn ∈ QA,

QA satisfies IV.D.1. �

IV.D.15. DEFINITION. (i) Suppose A ⊂ M is primary, and put
P := Rad(QA) (= Rad(ann(M/A))); we say that A is P-primary.

(ii) A submodule N ⊂ M has a primary decomposition if N =

A1 ∩ · · · ∩ An with each Ai primary. Writing Pi := Rad(QAi), this
primary decomposition is reduced if the Pi are distinct and no Ai

contains A1 ∩ · · · ∩ Âi ∩ · · · ∩ An. The Pi are again called associated
primes.

IV.D.16. PROPOSITION. If N has a PD, then it has an RPD.

PROOF. See the proof of IV.D.9. The main new point is that we
need to know the intersection A ∩ B of two P-primary modules is
a P-primary module. First note that QA∩B = QA ∩ QB, which is P-
primary by IV.D.7 since QA and QB are. Now, given rm ∈ A∩ B with
m /∈ A ∩ B, we have rm ∈ A and (say) m /∈ A, hence (by (IV.D.13))
rn ∈ QA and thus r ∈ Rad(QA) = P = Rad(QA∩B). But then we
have a power rm ∈ QA∩B whence rmM ⊂ A ∩ B. �

We are now ready to prove a uniqueness result for RPDs.
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IV.D.17. THEOREM. (i) Let N ( M be an R-submodule with two
RPDs A1 ∩ · · · ∩ Ak = N = A′1 ∩ · · · ∩ A′`, with Ai Pi-primary and A′j
P′j -primary. Then k = ` and, up to reordering, Pi = P′i (∀i).

(ii) If Pi is an isolated prime (i.e. contains no other Pj), then in addition
we get Ai = A′i.

PROOF. (i) We may assume that P1 is maximal (under inclusion)
in {P1, . . . , P′`}. Suppose that no P′j = P1. Then P1 6⊂ P′j (∀j); and
P1 6⊂ Pi (∀i > 1) by definition (i.e. IV.D.15(ii)). So by the Prime
Avoidance Lemma, P1 6⊂ P2 ∪ · · · ∪ Pk ∪ P′1 ∪ · · · ∪ P′` =: U.

Let r ∈ P1\(P1 ∩ U). Then rnM ⊂ A1 for some n and we set

N∗ := {x ∈ M | rnx ∈ N} ⊂ N.

If k = 1 then N = A1 =⇒ N∗ = M =⇒ N = M yields a
contradiction. If k > 1 then A2 ∩ · · · ∩ Ak ⊂ N∗ and A′1 ∩ · · · ∩ A′` ⊂
N∗. I claim these inclusions are equalities. Consider x /∈ A2 ∩ · · · ∩
Ak. By (IV.D.13), rnx ∈ Ai (>1) would imply rmn ∈ QAi hence r ∈ Pi

(contradicting the choice of r), so rnx /∈ A2 ∩ · · · ∩ Ak hence rnx /∈ N
and x /∈ N∗. Conclude that N∗ = A2 ∩ · · · ∩ Ak. Similarly one shows
N∗ = A′1 ∩ · · · ∩ A′` (= N). But then A2 ∩ · · · ∩ Ak = N∗ = N =

A1 ∩ · · · ∩ Ak ⊂ A1 contradicts the definition of RPD.
We are forced by these contradictions to admit that P1 = P′j for

some j, say j = 1. Using A2 ∩ · · · ∩ Ak = N∗ = A′2 ∩ · · · ∩ A′` we
reduce by induction to the base case k = 1.

In the k = 1 case, if ` > 1 a symmetric argument shows each P′j>1
must equal something on the other side, and P1 is the only possibil-
ity. But then P′2 = P1 = P′1 contradicts the definition of RPD again,
and so ` = 1.

(ii) Suppose P1 is isolated, and A1, A′1 are P1-primary. For each
j ≥ 2, ∃rj ∈ Pj\(Pj ∩ P1) =⇒ t := r2 · · · rk ∈ (P2 ∩ · · · ∩ Pk)\(P1 ∩
· · · ∩ Pk). Since Aj [resp. A′j] is Pj-primary, ∃ nj [resp. mj] with
tnj M ⊂ Aj [resp. tmj M ⊂ A′j] for j ≥ 2. Put n := max({nj, mj}k

j=2),
and define Ñ := {x ∈ M | tnx ∈ N}.
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I claim that A1 = Ñ. Given x ∈ A1, we have tnx ∈ A1 ∩ · · · ∩
Ak = N =⇒ x ∈ Ñ. Conversely, x ∈ Ñ =⇒ tnx ∈ N ⊂ A1. Since
A1 is P1-primary and t /∈ P1, we have tmM 6⊂ A1 (∀m ≥ 0). Now
if x /∈ A1, then (since A1 is primary) tnx ∈ A1 =⇒ tnqM ⊂ A1, a
contradiction. So x ∈ A1 and the claim is proved.

Similarly, we get A′1 = Ñ. So A′1 = A1 and we are done. �

Turning to the existence of RPDs, we recall that finitely-generated
modules over a Noetherian ring, including the ring itself, satisfy the
ACC. In particular, IV.D.10 follows immediately from the next result
together with IV.D.17.

IV.D.18. THEOREM. If M satisfies the ACC, then every N ( M has
an RPD.

PROOF. Say S := {N ⊂ M | N has no PD} is nonempty. The
ACC yields an upper bound for each chain, hence a maximal N ∈ S.
Since N is certainly non-primary, there exist r ∈ R and m ∈ M\N
such that rm ∈ N and rnM 6⊂ N (∀n ∈N).

Define an ascending chain by Mn := {x ∈ M | rnx ∈ N}; in
particular, M0 = N and M1 3 m. By the ACC, this chain stabilizes
at (say) k. Set Ñ := {x ∈ M | x = rky + z for some y ∈ M, z ∈ N}.
Clearly N ⊂ Mk ∩ Ñ.

Conversely, given x ∈ Mk ∩ Ñ, we have x = rky + z and also
rkx ∈ N, hence

r2ky = rk(rky) = rk(x− z) = rkx− rkz ∈ N

=⇒ y ∈ M2k = Mk =⇒ rky ∈ N =⇒ x = rky + z ∈ N. So
Mk ∩ Ñ = N.

Now since m ∈ Mk\N and rk M 6⊂ M, we have N ( Mk ( M and
N ( Ñ ( M. By maximality of N in S, Ñ and Mk must have PDs. But
then their intersection (namely N) does, by concatenating the PDs, a
contradiction. So S = ∅ and IV.D.16 adds the final touch. �
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Krull intersection theorem.

We conclude with an application of primary decomposition. This
will require a couple of lemmas.

IV.D.19. LEMMA. Let M be a finitely generated R-module, and I :=
ann(M) ⊂ R. Then M is Noetherian [resp. Artinian] ⇐⇒ R/I is
Noetherian [resp. Artinian].

PROOF. (⇐= ): Because I annihilates M, M may be regarded
also as an R/I-module. Since R/I satisfies the ACC [resp. DCC], so
does M as R/I-module (by IV.B.8). As R-submodules are also R/I-
submodules, they also satisfy the ACC [resp. DCC].

( =⇒ ): Writing M = ∑n
j=1 Rmj (by finite generation), we have I =

∩n
j=1ann(Rmj) =: ∩n

j=1 Ij. Consider the natural R-module homomor-
phisms

R/I
θ
↪→ ×n

j=1R/Ij
∼=→ ⊕n

j=1Rmj.

As submodules of M, the R/Ij satisfy the ACC [resp. DCC]. Hence,
so does the submodule R/I of their direct sum (cf. IV.B.7). �

IV.D.20. LEMMA. Let P ⊂ R be a prime ideal, M a Noetherian R-
module, and N ⊂ M a P-primary submodule. Then there exists m ∈ N

such that PmM ⊂ N. (In particular, any P-primary ideal in a Noetherian
ring contains some power of P.)

PROOF. Set I := ann(M) and R̄ := R/I, so that M, N may be
viewed as R̄-modules. We have

I ⊂ ann(M/N) ⊂ P = Rad(ann(M/N)).

Clearly N is a P̄-primary R̄-submodule, and P̄ consists of the ele-
ments of R̄ some power of which kills M/N (knocks M into N).

Now M Noetherian IV.D.19
=⇒ R̄ Noetherian IV.C.11

=⇒ P̄ finitely gener-
ated =⇒ P̄ = ( p̄1, . . . , p̄s). So (for each i) ∃ni ∈ N such that
p̄ni

i M ⊂ N. Setting m = n1 + · · · + ns, we have P̄mM ⊂ N hence
PmM ⊂ N. �
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IV.D.21. KRULL INTERSECTION THEOREM (v. 1). Given an ideal
I ⊂ R and a Noetherian R-module M, set N = ∩n≥1 InM. Then IN = N.

PROOF. If IN = M, then M = IN ⊂ N =⇒ N = M = IN. So
we may assume IN 6= M, and let IN = N1 ∩ · · · ∩ Ns be a RPD with
associated primes P1, . . . , Ps.

Suppose I ⊂ Pi (for some i); then IV.D.20 =⇒ Pm
i M ⊂ Ni (for

some m) =⇒ N = ∩n≥1 InM ⊂ ImM ⊂ Pm
i M ⊂ Ni.

On the other hand, if I 6⊂ Pi, then let r ∈ I\(I ∩ Pi). If N 6⊂ Ni,
then ∃ν ∈ N\(N ∩ Ni); and since rν ∈ IN ⊂ Ni, ν /∈ Ni, and Ni is
primary, we must have rnM ⊂ Ni (for some n) hence r ∈ Pi. This
contradiction means that N ⊂ Ni.

So either way, N ⊂ Ni. Since i was arbitrary, N ⊂ ∩iNi = IN
hence N = IN. �

It will be easier to see what this means (at least for local rings) in
“v. 2”, after we prove Nakayama’s theorem in the next section.


