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IV.F. Ring extensions

In analysis, geometry, and topology, a very common situation is
to have a surjective map π : Y � X spaces of some kind: Riemann
surfaces, differentiable manifolds, algebraic varieties, etc. Think of
Y as “lying over” X. Given a class of functions on each space closed
under addition, subtraction and mutiplication, we can think of these
as forming rings; and (assuming π is compatible with this class) the
functions “downstairs” form a subring of the functions “upstairs”
by pullback f 7→ f ◦ π.

For instance, if X and Y are Riemann surfaces, and π is holomor-
phic, then there is an induced map π∗ : M(X) ↪→M(Y) of fields of
meromorphic functions, producing a field extension. If X and Y are
noncompact, so that the holomorphic functions aren’t constant,5 we
also get an induced map π∗ : O(X) ↪→ O(Y) of rings of holomorphic
functions. (One can do much the same with polynomial functions
on algebraic varieties, which yield the coordinate rings defined in the
next section.) This motivates the following:

IV.F.1. DEFINITION. Given a ring R, an extension of R is a pair
(ı, S) consisting of a ring S and a ring homomorphism ı : R ↪→ S. As
with fields, this is written S/R and we will usually suppress the “ı”.

IV.F.2. EXAMPLES. This will be a bit heuristic, as we haven’t yet
defined coordinate rings. But sometimes it is better to approach
things “bottom-up” rather than “top-down”.

(i) For any ring R, the polynomial ring S = R[x1, . . . , xn] gives an ex-
tension. If R is the coordinate ring of a variety X over a field k, then S
is that of X× kn, and R ↪→ S is the “pullback map” for the projection
X × kn � X. Note that S is not finitely-generated as an R module.
If we pass to fraction fields, the resulting extension F(S)/F(R) has

5Liouville’s theorem, which states that a bounded entire function on the complex
plane is constant, implies that holomorphic functions on a compact Riemann sur-
face are constant. You still get a pullback map if X and Y are compact, but (assum-
ing they are also irreducible) it’s just the identity map C→ C.
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transcendence degree equal to the dimension of the “fibers” of this
map.

(ii) What would the ring extension look like for a surjective map be-
tween varieties of the same dimension? Given a polynomial P(x) ∈
C[x], the natural embedding R := C[x] ↪→ C[x, y]/(y2 − P(x)) =: S
is the pullback (on coordinate rings) associated to the 2:1 map from
Y := {y2 = P(x)} ⊂ C×C to X := C by (x, y) 7→ x. The yoga here
is that you get polynomial functions on Y by taking polynomials on
C×C and going modulo the ideal of functions vanishing on Y.

One thing we would like to study is how maximal ideals in R
and S are related, since these correspond to points “upstairs” and
“downstairs”. Notice also in this case that S has finite rank as an
R-module, which makes the situation resemble a finite extension of
fields. There is even an automorphism of S over R induced by send-
ing y 7→ −y.

A related example, whose relation to geometry is less clear, is that
of OK/Z when K is a number field.

(iii) The two types of localization also produce ring extensions, as-
suming the multiplicative set has no zero-divisors. For instance, the
embedding of R = C[x] in S = R[ 1

x−a ] represents pullback of (regu-
lar) functions from C to C\{a}. The embedding of R in its fraction
field F{R} (viz. C(x)/C[x], or K/OK) also yields a ring extension. In
none of these cases is S finitely generated as an R-module. However,
the fraction fields are the same, so the extension isn’t “transcenden-
tal” in the sense of (i).

Polynomial and power-series extensions.

We begin with a basic structural result in the “transcendental ex-
tension” case encountered in IV.F.2(i).

IV.F.3. HILBERT BASIS THEOREM. Let R be a Noetherian ring. Then
R[x] is also Noetherian.
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PROOF. Let I ⊂ R[x] be a nonzero ideal. By IV.B.10, it suffices to
show that I is finitely generated. Suppose otherwise, and let f0(x) ∈
I be a nonconstant polynomial of lowest degree > 0.

For each n > 0 we choose inductively fn ∈ I\( f0, . . . , fn−1) of
minimal degree > 0, and set dn := deg( fn). (Clearly dn ≥ dn−1.)
Let an denote the coefficient of xdn in fn, and consider the ascending
chain

(a0) ( (a0, a1) ( · · · ( (a0, . . . , an) ( · · ·
in R. As R is Noetherian, this must stabilize at some m, and then
am+1 = ∑m

i=0 λiai for some {λi}m
i=0 ⊂ R. But since fm+1 /∈ ( f0, . . . , fm),

g(x) := fm+1(x)−∑m
i=0 λi fi(s)xdm+1−di /∈ ( f0, . . . , fm)

while having deg(g) < deg( fm+1). This contradicts minimality of
dm+1. �

IV.F.4. COROLLARY. If R is Noetherian, then R[x1, . . . , xn] is too. In
particular, k[x1, . . . , xn] is Noetherian for any field k.

So for instance, this means that any ideal I ⊂ k[x1, . . . , xn] has a
reduced primary decomposition. We can think of this as meaning
that any algebraic subset V, defined by the vanishing of all functions
in I, can be written uniquely as the union of “irreducible” compo-
nents corresponding to the associated primes of the RPD. (This can
be as simple as separating xy = 0 in C2 into x = 0 and y = 0.)

IV.F.5. REMARK. Let R be Noetherian and P a prime ideal; then
one can show that the length of a chain of primes

P0 ( P1 ( · · · ( Pd = P

is bounded above by the number of generators of P (which we know
is finite). One calls the maximum length of such a chain the height
of P, and the supremum of heights of its prime ideals the (Krull)
dimension of R. While there are weird examples where this is ∞,
we have dim(R) = 0 for fields, 1 for PIDs, dim(R[x]) = dim(R) + 1,
and dim(k[x1, . . . , xn]) = n. More generally, if R is the coordinate
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ring of an algebraic variety over C, then dim(R) is the same as the
(complex) dimension of the associated complex analytic space.

Consider for example R = k[x], and suppose {0} = P0 ( P1 ( P2

is a chain of prime ideals. Then P1 = ( f1(x)) and P2 = ( f2(x)), since
R is a PID, and then f2 | f1 =⇒ f1 = f2g. Since P1 is prime, and
f1 - f2 (as P1 ( P2), we have f1 | g hence f1 = f2h f1 =⇒ f2 ∈ R∗,
a contradiction. So the longest chains have length 1, like (0) ( (x),
and dim(R) = 1.

When you study complex analytic curves C = { f (x, y) = 0} ⊂
C × C defined by f ∈ C[x, y], one of the basic steps is to estab-
lish something called Weierstrass factorization. That is, you fix an
x-coordinate (say, 0) and study the restriction of the curve to the
cylindrical neighborhood {|x| < ε} ×C by passing to C[y][[x]], and
split it into irreducibles there. For example, although f (x, y) = y2 −
x3 − x2 is irreducible in C[x, y], in C[[x]] we have

√
1 + x and so

f = (y − x
√

1 + x)(y + x
√

1 + x) in C[y][[x]]. The fact that such a
factorization always exists is a consequence (via taking RPD of ( f ))
of the Noetherianity of C[y][[x]], guaranteed by

IV.F.6. THEOREM. If R is Noetherian, then so is R[[x]].

SKETCH. Given I ⊂ R[[x]], define an ascending chain of ideals
in R by Jn := {r ∈ R | ∃∑j≥n cjxj ∈ I s.t. r = cn}, which stabilizes
at (say) n = m. Pick f1, . . . , fM [resp. g1, . . . , gN] in R[[x]] so that
their first nonzero coefficients generate the respective {Jn}n<m [resp.
Jm] (which are f.g. by Noetherianity of R). For any f ∈ I, there are
ri ∈ R such that g := f −∑M

i=1 ri fi ∈ I has order of vanishing at least
m at x = 0. Now subtract an R-linear combination of the {gj} to
clear the mth coefficient, then a combination of the {xgj} to clear the
(m + 1)st coefficient, etc. (This is possible because Jm = Jm+1 = · · · .)
The upshot is that f is the sum of an R-linear combination of the { fi}
and an R[[x]]-linear combiantion of the {gj}, which proves that I is
finitely generated, hence (by IV.B.10) that R[[x]] is Noetherian. �
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Integral extensions.

We turn next to the ring-extension analogue of algebraic exten-
sions of fields, in line with Example IV.F.2(ii).

IV.F.7. DEFINITION. Let S/R be a ring extension.
(i) s ∈ S is integral over R if there exists a monic polynomial

f ∈ R[z] with f (s) = 0.
(ii) S/R is integral if all elements of S are integral over R.

The examples of IV.F.2(i) (like Z[x]/Z) and IV.F.2(iii) (like Q/Z)
are not integral; those of IV.F.2(ii) are. Indeed, OK/Z is integral by
the very definition of algebraic integers. As for the 2:1 curve-cover
scenario Y � X: taking s = F(x, y) ∈ S, we have that f (z) :=
(z− F(x, y))(z− F(x,−y)) ∈ C[x][z] = R[z] is monic, with f (s) = 0.
(Here F(x, y)+ F(x,−y) and F(x, y)F(x,−y) are both in C[x] because
they are “Galois-invariant”.)

Moreover, in the curve-cover case there is at least one point y
“upstairs” over every point x “downstairs”. This translates to hav-
ing a prime ideal Q of S “over” each prime ideal P of R, in the sense
that Q∩ R = P, since functions vanishing at x pull back to ones van-
ishing at y. Alternatively, forOK/Z, for each prime (p) ⊂ Z, we can
factor pOK = P1 . . . Pr into primes ofOK; and then each Pj ∩Z = (p)
(why?). We will make this sort of “primes over primes” business
more rigorous later and show that it is always true for integral ex-
tensions.

The next result generalizes [Algebra I, III.L.1] (the R = Z case):

IV.F.8. PROPOSITION. For a ring extension S/R and element s ∈ S,
the following are equivalent:
(i) s is integral over R;
(ii) R[s] is a finitely-generated R-module;
(iii) there is a subring T ⊂ S which contains R[s] and is finitely-generated
as an R-module; and
(iv) there is an R[s]-submodule M ⊂ S which is finitely-generated as R-
module and has trivial annihilator in R[s].
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PROOF. (i) =⇒ (ii): Suppose f (x) ∈ R[x] is monic, with f (s) = 0;
and let g(s) ∈ R[s] be arbitrary. By the division algorithm, we have
g(x) = f (x)q(x) + r(x), with deg(r) < deg( f ) =: m. Substitution
gives g(s) = r(s), and so R[s] = R〈1, s, . . . , sm−1〉.

(ii) =⇒ (iii): Take T = R[s].

(iii) =⇒ (iv): Put M := T; then R ⊂ R[s] ⊂ T =⇒ M is a
f.g. R-module containing R[s]. Since M 3 1, annR[s](M) = {0}.

(iv) =⇒ (i): We are given that M = R〈µ1, . . . , µn〉 is closed un-
der multiplication by R[s]; accordingly, write sµi = ∑j rijµj. Let-
ting A denote the matrix with entries aij := −rij + sδij, this becomes
∑j aijµj = 0. If B is the identity matrix with kth column replaced

by

(
µ1
...

µn

)
, then AB has a column of zeroes hence 0 = det(AB) =

det(A)det(B) = det(A)µk. As this holds for each k, and by assump-
tion annR[s](M) = {0}, we have det(A) = 0, which says that s satis-
fies the characteristic polynomial of (rij) ∈ Mn(R). �

As a consequence, we get that “finite” extensions are integral, as
the examples suggest:

IV.F.9. COROLLARY. (a) If S/R is finitely generated as an R-module,
then S/R is integral.

(b) If S/R is an extension and s1, . . . , sn ∈ S are integral over R, then
R[s1, . . . , sn] is a f.g. R-module which is (as a ring) integral over R.

(c) If S/R and T/S are integral extensions, then T/R is integral.

PROOF. (a) Let s ∈ S, and T := S in IV.F.8(iii). Done by (i).
(b) For each j, sj is integral over R[s1, . . . , sj−1], and so R[s1, . . . , sj]

is f.g. as a module over R[s1, . . . , sj−1] by IV.F.8[(i) =⇒ (ii)]. By tak-
ing all products of generators up the tower, we get a (finite) set of
generators for R[s1, . . . , sn] as R-module. Apply part (a).

(c) Given t ∈ T, there is a monic f = ∑i sixi ∈ S[x] with f (t) =

0. So t is integral over R[s0, . . . , sn−1], whence (by IV.F.8[(i) =⇒
(ii)]) R[s0, . . . , sn−1][t] is a f.g. R[s0, . . . , sn−1]-module. By part (b),
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R[s0. . . . , sn−1] is f.g. as R-module, and thus (by multiplying genera-
tors) R[s0, . . . , sn−1][t] is f.g. as R-module. Applying IV.F.8[(iii) =⇒
(i)] (to the subring R[s0, . . . , sn−1][t] containing R[t]), we get that t is
integral over R. �

IV.F.10. DEFINITION. Given a ring extension S/R, the integral
closure R̂ (of R in S) is the subset of S comprising all elements inte-
gral over R.

The basic example to have in mind here is where S = K is a
number field and R = Z; then by definition of the ring of integers,
R̂ = OK.

IV.F.11. COROLLARY. R̂/R is an integral extension containing all
subrings of S integral over R.

PROOF. The main thing to check is that R̂ is a ring. Given s, t ∈ R̂,
R[s, t] is integral over R by IV.F.9(b). So its elements st and s± t are
integral over R, i.e. belong to R̂. �

IV.F.12. DEFINITION. (i) Given a ring extension S/R, we say that
R is integrally closed in S if R = R̂.

(ii) Given a domain R, R is integrally closed or normal if it is
integrally closed in its fraction field.

For a number field K, OK is integrally closed in K (though not in
C). But here is a considerably deeper

IV.F.13. EXAMPLE. Consider the rings R = C[x,y]
(y2−x3+x2)

and R′ =
C[x,y]

(y2−x3+x) . It turns out that R′ is normal (which we won’t prove),

while R is not: the monic polynomial z2− (x− 1) ∈ R[z] has solution
y
x in F(R), since y2

x2 − (x− 1) = x3−x2

x2 − (x− 1) = 0. So one might ask

whether T := C[x,y,z]
(y2−x3+x2, z2−x+1) gives the integral closure R̂ ⊂ F(R).

This isn’t quite correct; as you’ll see in the HW, T isn’t even a domain,
and one needs to add a generator to the ideal in the denominator.
Once one does that, one has indeed constructed R̂ = R[ x

y ] ⊂ F(R).
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Geometrically, we can think of R and R′ as the rings of polyno-
mial functions on the curves C = {(x, y) | y2 = x2(x − 1)} and
C′ = {(x, y) | y2 = x3 − x} in C2:

The key difference between these curves is that C′ is nonsingular,
whereas C has a “nodal” singularity at (0, 0) with two tangent lines,
x = iy and x = −iy. For hypersurfaces, a singularity is just a
point where all the partials of the defining equation vanish; the cor-
responding coordinate ring is non-normal essentially when a hyper-
surface is singular in codimension 1. So for curves, singular means
non-normal.

Replacing R by R̂ amounts to resolving the singularity by discon-
necting these two local branches of C, to get Ĉ. (The full ideal you’ll
find in HW provides equations for Ĉ in C3, and the map π is simply
the one that forgets the z-coordinate.) This makes sense because the
new function y

x distinguishes between q1 and q2 (by taking the dis-
tinct values +i and −i), whereas the restriction of a polynomial in
C[x, y] is well-defined at p = (0, 0) and so cannot.



IV.F. RING EXTENSIONS 233

The map π : Ĉ → C is called the normalization of C. This is totally
different from the “Noether normalization” that we will encounter
in the next section.

“Lying over” and “going up”.

Let S/R be a ring extension. We are now ready to take a look at
the relationship between prime ideals in R and S.

IV.F.14. PROPOSITION-DEFINITION. Given a proper ideal I of S, J :=
I ∩ R is a proper ideal of R. We call J the contraction of I to R, and say
that I lies over J. In particular, if I is prime then so is J.

PROOF. J is an ideal because given  ∈ J and r ∈ R, r ∈ (I ∩
R)R ⊂ IS ∩ R ⊂ I ∩ R = J; it is proper because 1 /∈ I =⇒ 1 /∈ J.
Finally, if r1r2 ∈ J (⊂ I) for r1, r2 ∈ R (⊂ S), and I is prime, then r1

or r2 belongs to I, hence J. �

IV.F.15. EXAMPLES. (a) Consider R = C[x] inside S′ = C[x,y]
(y2−x3+x)

from IV.F.13, an inclusion given by pullback of (polynomial) func-
tions from the x-line to C′ = {(x, y) | y2 = x3 − x}. The ideals I1 =

(x− 2, y−
√

6) and I2 = (x− 2, y +
√

6) in S′ are prime, comprising
functions on C′ vanishing at p1 = (2,

√
6) resp. p2 = (2,−

√
6). (A

product of functions FG vanishing at pi certainly means that F or G
does.)
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Their contractions to R are both J = (x− 2), since f (x) ∈ R van-
ishes on pi iff f (2) = 0. So we see the reason for the terminology: the
{Ii} lie over (x− 2), just as the points {pi} lie over x = 2. Moreover,
since

(y−
√

6)(y +
√

6) = y2 − 6 = x3 − x− 6 = (x− 2)(x2 + 2x + 3)

∈ (x− 2)S,

we have I1 ∩ I2 = I1 I2 = (x− 2)S.

(b) In S = Z[
√
−5], I = (3, 1 +

√
−5) and Ĩ = (3, 1−

√
−5) are

distinct primes whose contraction to R = Z is (3). (That is, I and Ĩ
lie over (3).) Moreover, their product is the ideal (3)Z[

√
−5].

The fact that a prime in S always contracts to a prime in R matches
the geometric idea that irreducible objects “upstairs” have irreducible
images “downstairs”. Conversely, we might ask whether, given a
prime P ⊂ R “downstairs”, there is a prime lying over it. Certainly
the preimage of an irreducible (like the point x = 2) under the maps
we’ve seen are not irreducible, but they do break into irreducibles. On
the other hand, it’s clear we need another hypothesis: what if, in the
last picture, we replaced C′ by C′\{p1, p2}? (Or worse, how about
them primes of Q lying over (2) ⊂ Z?) I claim that integrality will
suffice to rule such a situation out:

IV.F.16. THEOREM (Lying-over). Let S/R be an integral extension,
and P ⊂ R a prime ideal. Then there exists a prime Q ⊂ S lying over P.

PROOF. If P is prime, then R\P is a multiplicative subset of S (in
the sense of IV.A.1). Let Q ⊂ S be maximal amongst ideals of S
avoiding R\P; then by IV.C.1, Q is prime! Clearly also Q ∩ R ⊂ P. I
claim that this inclusion is an equality.

Suppose otherwise, and consider u ∈ P\(Q ∩ R). Then we have
Q + S(u) ) Q, whence maximality of Q (in the above sense) gives
(Q + S(u)) ∩ (R\P) 6= ∅. Let c = q + su be an element of this latter
intersection.
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Since S/R is integral, there is a monic f (x) = xn + ∑n−1
j=0 rjxj ∈

R[x] with f (s) = 0, so that

0 = un f (s) = (su)n + ∑n−1
j=0 rjun−j(su)j.

Substituting su = c − q, we find that ν := cn + ∑n−1
j=0 rjun−jcj ∈ Q.

As c, u, rj ∈ R, in fact ν ∈ R ∩Q ⊂ P; and since u ∈ P as well, we get
cn ∈ P. By primeness of P, this gives c ∈ P, a contradiction. �

We can also refine the lying-over question. For instance, say we
have a map π : Y → X between surfaces. If C ⊂ Y is an irreducible
curve, and p ∈ π(C) ⊂ X a point, is there a point of C lying over p?

IV.F.17. THEOREM (Going-up). Let S/R be an integral extension,
P1 ⊂ P ⊂ R primes, and Q1 ⊂ S a prime lying over P1. Then there exists
a prime Q lying over P, with Q1 ⊂ Q ⊂ S.

PROOF. We have Q1 ∩ R = P1 ⊂ P =⇒ Q1 ∩ (R\P) = ∅. Let
Q be maximal among ideals of S avoiding R\P and containing Q1.
Again by IV.C.1, Q is prime, and Q ∩ R ⊂ P. The remainder of the
proof is as in IV.F.16. �

The reason for the name “going up” has to do with ascending
chains:6 given P0 ⊂ P1 ⊂ · · · ⊂ Pn primes of R, Q0 ⊂ Q1 ⊂ · · · ⊂ Qk

(k < n) primes of S, and Qi lying over Pi for each i ≤ k; then in-
ductively applying IV.F.17, we can extend the latter chain by primes
Qk+1, . . . , Qn lying over the corresponding {Pi}.

Now one obtains an integral extension S of R by adjoining solu-
tions to polynomial equations, which suggests finite covers; and our
main geometric example has involved a pair of curves. It doesn’t
seem to bold to guess that S and R should have the same (Krull) di-
mension. The going-up story suggests the following argument: say
R has a finite dimension d, and P0 ( P1 ( · · · ( Pd is a maximal
chain of primes. Then (by IV.F.16-IV.F.17) there is a chain of primes

6There is also a “going-down” result for desceinding chains of primes, provided
that (in addition to S/R being integral) R is normal. We won’t prove this. All of
these results — lying-over, going-up, and going-down — are due to Cohen and
Seidenberg (1945).



236 IV. COMMUTATIVE RINGS

Q0 ( · · · ( Qd in S lying over it, where Qi−1 ( Qi because their
intersections with R satisfy Pi−1 ( Pi. This shows dim(S) ≥ dim(R).

For the opposite inequality, begin with a chain of primes Qi in
S and intersect them with R. For this to yield a chain in R of the
same length, we need to know that Qi−1 ( Qi contracting to the
same prime of R cannot happen:

IV.F.18. PROPOSITION. If S/R is integral, P ⊂ R is prime, and Q ⊆
Q′ ⊂ S are primes both lying over P, then Q = Q′.

PROOF. Suppose otherwise, and pick u ∈ Q′\Q. Since u is inte-
gral over R, we may choose f = ∑n

i=0 rixi ∈ R[x] monic of least (pos-
itive) degree satisfying f (u) ∈ Q. (Certainly, if we can get f (u) = 0,
we can get f (u) ∈ Q.) But then r0 = f (u) − ∑n

i=1 riui ∈ Q′ ∩ R =

P = Q ∩ R ⊂ Q =⇒ u(∑n
i=1 riui−1) ∈ Q. Since ∑n

i=1 riui−1 /∈ Q by
minimality, primeness of Q implies u ∈ Q, a contradiction. �

The Proposition completes the line of thought above, yielding:

IV.F.19. COROLLARY. If S/R is integral, then dim(S) = dim(R).

The following restatement of IV.F.18 is also useful:

IV.F.20. COROLLARY (Incomparability). If Q and Q′ are distinct
primes in an integral extension S/R lying over the same prime P, then
Q′ 6⊂ Q and Q 6⊂ Q′.

Finally, we get the algebraic version of “points upstairs corre-
spond to points downstairs”:

IV.F.21. COROLLARY. Suppose S/R is integral, and Q ⊂ S is a prime
lying over P ⊂ R. Then Q is maximal in S ⇐⇒ P is maximal in R.

PROOF. ( =⇒ ): Let m ⊃ P be maximal in R, and Q′ ⊃ Q be a
prime lying over it (by IV.F.17). Since Q is maximal, Q′ = Q; hence
P = Q ∩ R = Q′ ∩ R = m.

(⇐= ): Let m ⊃ Q be maximal in S; then P = R∩Q ⊂ R∩m ( R.
Since P is maximal, P = R ∩m. But then Q and m both lie over P,
with Q ⊂ m; and so by IV.F.18 we conclude that Q = m. �
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Examples of integrally closed domains.

You may recall the big diagram [Algebra I, (III.B.1)] from when
we first introduced rings last term: we have only now, with IV.F.12(ii),
“filled in” the class between UFDs and commutative domains:

(IV.F.22) PIDs ⊂ UFDs ⊂ integrally closed
domains

⊂ commutative
domains

in which it remains to check the second inclusion:

IV.F.23. PROPOSITION. UFDs are integrally closed.

PROOF. Let R be a UFD, with fraction field F := F{R}. Because
GCDs are defined in R, we can write any element of F as r

r0
with

gcd(r, r0) = 1. Suppose that r
r0
∈ R̂: that is, it satisfies a monic

integral equation ( r
r0
)m + ∑m

j=1 rj(
r
r0
)m−j = 0. Then multiplying by

rm
0 , we get rm +∑m

j=1 rjr
j
0rm−j = 0, so that r0 | rm. But gcd(rm, r0) = 1,

and so r0 ∼ 1 is a unit, and r
r0
∈ R. �

In fact, there is a key example of integrally closed domain which
could replace UFDs in (IV.F.22):

IV.F.24. DEFINITION. A Dedekind domain is a commutative do-
main which is Noetherian, integrally closed, and in which every
nonzero prime ideal is maximal.7

To see that indeed

(IV.F.25) PIDs ⊂ Dedekind domains ⊂ integrally closed
domains

note that:

• every prime in a PID is maximal by the argument in IV.F.5;
• PIDs are integrally closed by IV.F.23; and
• PIDs are Noetherian e.g. by IV.B.10.

7Some authors insist on the additional proviso “not a field” in this definition.
We prefer not to do this as it ruins (IV.F.25). You can think of the difference as
a Dedekind domain having Krull dimension ≤ 1 (for us) vs. = 1 (if fields are out).
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IV.F.26. EXAMPLES. (a) Of course, Z is a PID hence both UFD
and Dedekind domain. By the results at the end of §I.M, we also
know that any ring of integers OK in a number field has all ideals
f.g. (hence is Noetherian by IV.B.10), and all prime ideals maximal.
Since OK is integrally closed by definition, it is a Dedekind domain.
Notice that OK is not a UFD unless the class number is 1 (in which
case it is also a PID).

(b) Another classic PID is k[x], for k any field. More generally,
k[x1, . . . , xn] is a UFD for any field k. By the Hilbert basis theorem,
it is Noetherian; and it is also integrally closed. But for n > 1 there
are plenty of non-maximal primes, like (x1)! (As we’ll see in the
next section, primes correspond to irreducible k-varieties in k̄n; and
one can think of the height of a prime as the codimension of said
variety. Maximal ideals are the primes of height n, and correspond
to points8 in kn.) So polynomial rings in more than one variable are
not Dedekind domains.

(c) A different generalization of k[x] is the ring of polynomial
functions on a smooth algebraic curve, e.g. k[x, y]/( f ) with f =

y2 − x3 + x. It turns out that these are all Dedekind domains, but
not UFDs unless the curve is rational, which is to say, isomorphic
to (an open subset of) the k-line. (Moreover, no coordinate rings of
higher-dimensional varieties will be Dedekind, as they have Krull
dimension ≥ 1.)

Our goal in the remainder of this section is to prove that we have
“unique ideal factorization” in Dedekind domains, just as we did
in the special case OK. To do this, we need to introduce the ob-
jects, important in their own right, which will be the localizations
of Dedekind domains at primes.

IV.F.27. DEFINITION. A discrete valuation ring (DVR) is a local
ring, not a field, which is also a PID.

8if k = k̄, to individual points; if not, then to finite collections of points on which
Aut(k̄/k) acts transitively.
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Since prime ideals are maximal in a PID, and local rings have
a unique maximal ideal, any DVR R has a unique prime ideal (π).
Indeed, up to units π is the unique prime of R up to multiplication
by a unit (why?); π is called a uniformizer. So every element of R is
of the form πmu, so there a well-defined order or valuation

ord(r) := max{n ∈N
∣∣ πn | r}

which, in particular, makes R into a Euclidean domain.

IV.F.28. EXAMPLES. k[x](x) and k[[x]] for any field k (with π = x);
Z(p) and Ẑ(p) for any prime number (π =) p.

IV.F.29. PROPOSITION. A domain R is a DVR ⇐⇒ R is Noetherian,
integrally closed, and has one nonzero prime ideal.

PROOF. ( =⇒ ): follows from the definition (since a PID is Noe-
therian and integrally closed).

(⇐= ): clearly R is local and not a field; we must show that it
is a PID. First, let a ∈ R\(R∗ ∪ {0}), and put M := R/(a). Taking
a maximal element P of the set of (proper) ideals {ann(m) | m ∈
M\{0}}, we can write P = ann(b + (a)) = {r ∈ R

∣∣ a | rb}. Since
b /∈ (a), we have b

a /∈ R. I claim that a
b ∈ R, and P = ( a

b ).
By construction, Pb ⊂ (a) hence b

a P ⊂ R. If b
a P ⊂ P, then P is an

R[ b
a ]-submodule of F{R} which is f.g. as R-module and has trivial

annihilator in R[ b
a ]. By IV.F.8[(iv) =⇒ (i)], we get b

a ∈ R̂. But R̂ = R
by assumption, so b

a ∈ R, a contradiction. Conclude that (since P is
maximal) b

a P = R hence P = a
b R = ( a

b ). Claim is proved.
Writing π := a

b , for an arbitrary ideal I ( R consider the ascend-
ing chain of R-modules I ⊂ Iπ−1 ⊂ Iπ−2 ⊂ · · · inside F{R}. If
Iπ−j = Iπ−j−1 for some j, then π−1(Iπ−j) = Iπ−j =⇒ π−1 ∈
R̂ = R (again by IV.F.8[(iv) =⇒ (i)]), a contradiction. So the chain is
strictly ascending, and thus cannot be contained in R by Noetherian-
ity. Let ` be the maximum integer for which Iπ−` ⊂ R. Then Iπ−` is
an ideal of R not contained in P (as Pπ−1 ⊂ R). Thus, Iπ−` = R and
I = (π`). �
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IV.F.30. PROPOSITION. The localization of a Dedekind domain R at
any nonzero prime is a DVR.

PROOF. We know that the localization RP at a prime P preserves
Noetherianity by IV.A.8(i), and produces a local ring with unique
prime ideal by IV.A.13(i).

To see that localization also preserves integral closedness, write
S = R\P (so that S−1R = RP) and suppose a ∈ F{R} = F{S−1R}
is integral over S−1R. Then a satisfies an equation of the form am +

∑m
j=1

rj
sj

am−j = 0, and multiplying this m times by s := s1 · · · sm shows

that sa is integral over R. Since R = R̂ by assumption, sa ∈ R hence

a = sa
s ∈ S−1R; conclude that Ŝ−1R = S−1R.

So the localization of R satisfies the 3 properties on RHS(IV.F.29),
hence is a DVR. �

IV.F.31. THEOREM. Every proper nonzero ideal in a Dedekind domain
R has a unique factorization as a product of prime ideals of R.

PROOF. Let {0} ( I ( R be given, and I = ∩m
i=1Qi be a RPD.

The Pi := Rad(Qi) are distinct, and maximal (R being Dedekind). So
Pi is the only prime containing Qi, and does not contain any other
Qj; hence Qi + Qj = R for i 6= j, and the {Qi} are coprime, whence
I = Q1 · · ·Qm.

As a subset of Pi, Qi avoids S := R\Pi. One easily checks that
primary ideals avoiding S are in bijection with primary ideals of
S−1R = RPi . Since RPi is a DVR by IV.F.30, the latter are powers
of S−1Pi; hence Qi is a power of Pi. Conclude that I = Pa1

1 · · · P
am
m for

some ai ∈ Z>0. �

Though we won’t prove this, it is perhaps not surprising (in view
of the examples in IV.F.26) that the intersection of the class of UFDs
and the class of Dedekind domains is precisely that of PIDs. (So,
for a UFD, one has Dedekind ⇐⇒ PID; and for a Dedekind do-
main, one has UFD ⇐⇒ PID.) That said, it’s also a little weird: for
non-PIDs, you have to choose between having “unique ideal factor-
ization” (into prime ideals) and unique factorization of elements!


