IV.G. Affine varieties

In this final section, we make explicit the correspondence between algebraic spaces and rings (of functions on them). Fix a field k, an algebraically closed field $K \supset k$, and a positive integer n.

IV.G.1. DEFINITION. Let $S \subset k[x_1, ..., x_n]$ be a subset. The **(affine)** *k***-variety** defined by S is

$$V(\mathcal{S}) := \{ \underline{a} \in K^n \mid f(\underline{a}) = 0 \; (\forall f \in \mathcal{S}) \},\$$

the common zero-locus of the polynomials in S.

Algebraic geometry has its origins in the study of such solution sets of polynomial equations. Here "affine" refers to the affine *n*space K^n (or " \mathbb{A}_K^n ") in which our varieties lie, as opposed (for example) to projective *n*-space \mathbb{P}_K^n . I should mention that, when algebraic geometers talk about a variety *W*, they really mean an object called a *scheme* that has more structure; the *K*-points would then be written W(K). For us there is no difference — it makes no sense to get that sophisticated in a brief treatment — but this does force us to work with points over an algebraically closed field.

IV.G.2. PROPOSITION. *Any variety is defined by a finite set of equations.*

PROOF. Writing (S) for the ideal generated by S in $k[x_1, ..., x_n]$, we have V(S) = V((S)). By the Hilbert basis theorem, (S) is finitely generated, say by $f_1, ..., f_m$; and then $V(S) = V(\{f_1, ..., f_m\})$. \Box

We can also turn things around:

IV.G.3. DEFINITION. The **vanishing ideal** associated to a subset $X \subset K^n$ is

$$J(\mathbf{X}) := \{ f \in k[x_1, \dots, x_n] \mid f(\underline{a}) = 0 \; (\forall \underline{a} \in \mathbf{X}) \}.$$

IV.G.4. PROPOSITION. For any X, J(X) is a radical ideal.

PROOF. First, the vanishing ideal is in fact an ideal: if $f_i(\underline{a}) = 0$ ($\forall a \in X$), and $g_i \in k[x_1, ..., x_n]$, then ($\sum_i g_i f_i$)(\underline{a}) = 0 ($\forall \underline{a} \in X$). To

see that it is its own radical: if $(f^n)(\underline{a}) = 0$ ($\forall \underline{a} \in X$), then $f(\underline{a}) = 0$ ($\forall \underline{a} \in X$).

We have inclusions of sets

$$\begin{aligned} \mathscr{S} &:= \text{ set of subsets of } k[x_1, \dots, x_n] \\ \cup \\ \mathscr{I} &:= \text{ set of ideals in } k[x_1, \dots, x_n] \\ \cup \\ \mathscr{R} &:= \text{ set of radical ideals} \\ \cup \\ \mathscr{P} &:= \text{ set of radical ideals} \\ \end{aligned}$$

Here \mathscr{P} is often called the **spectrum** of $k[x_1, ..., x_n]$, and written Spec($k[x_1, ..., x_n]$). Definitions IV.G.1 and IV.G.3 produce maps

$$V: \mathscr{S} \to \mathscr{V} \qquad \text{and} \qquad J: \mathscr{X} \to \mathscr{R}$$
$$I \mapsto V(I) \qquad \qquad X \mapsto J(X).$$

This is of course far from a bijection at this level: certainly, $J \circ V$ can't send a non-radical ideal to itself; and for the other composition $V \circ J$, the situation is even worse.

IV.G.5. EXAMPLE. In \mathbb{C}^2 , if we take X to be $\{\underline{a} \in \mathbb{C}^2 \mid |a_1|^2 + |a_2|^2 \leq 1\}$ or $\{\underline{a} \in \mathbb{C}^2 \mid a_1 = e^{a_2}\}$ or $\mathbb{Q} \times \mathbb{Q}$, we end up (regardless of *k*) with $J(X) = \{0\}$ hence $V(J(X)) = \mathbb{C}^2$. This can also depend on the choice of *k*: for instance, if $k = \mathbb{Q}$ and n = 1, and $X = \{\pi\}$ [resp. $\{\sqrt{5}\}$], then we get $V(J(X)) = \mathbb{C}$ [resp. $\{\sqrt{5}, -\sqrt{5}\}$].

IV.G.6. DEFINITION. (a) Given a subset $X \subset K^n$, the variety $\overline{X} := V(J(X)) \subset K^n$ is called the *k*-**Zariski closure** of X. It is the intersection of all *k*-varieties (equiv., the smallest *k*-variety) containing X.

(b) Similarly, we can define the *closure* of a set $S \in \mathscr{S}$ by $\overline{S} := J(V(S))$. Clearly, the ideal generated by S is contained in \overline{S} .

⁹You should be able to supply proofs of these statements, using the fact that a polynomial in one variable has finitely many roots, together with Lindemann-Weierstrass etc.

As to what one *can* say right off the bat about *V* and *J*, here is what follows (mostly) tautologically from the definitions. Note in particular the inclusion-reversing property (iii-iv):

IV.G.7. PROPOSITION. Let $S, T \in \mathscr{S}$, and $X, Y \in \mathscr{X}$. (i) $V(k[x_1, ..., x_n]) = \emptyset$ and $V((0)) = K^n$. (ii) $J(\emptyset) = k[x_1, ..., x_n]$ and $J(K^n) = (0)$. (iii) $S \subset T \implies V(T) \subset V(S)$. (iv) $X \subset Y \implies J(Y) \subset J(X)$. (v) $S \subset J(V(S)) = \overline{S}$ and $X \subset V(J(X)) = \overline{X}$. (vi) V(S) = V(J(V(S))) and J(X) = J(V(J(X))).

PROOF. (i) 1 vanishes nowhere, while 0 vanishes everywhere.

(ii) *K* is infinite (since algebraically closed), so any nonzero polynomial takes a nonzero value somewhere by [Algebra I, III.G.23]. This gives $J(K^n) = \{0\}$.

(iii) Given $\underline{a} \in V(\mathcal{T})$, every $f \in \mathcal{T}$ vanishes at \underline{a} ; so every $f \in \mathcal{S}$ vanishes at \underline{a} , and $\underline{a} \in V(\mathcal{S})$.

(iv) Given $f \in J(Y)$, we have $f(\underline{a}) = 0$ ($\forall \underline{a} \in Y$), hence $f(\underline{a}) = 0$ ($\forall \underline{a} \in X$); thus $f \in J(X)$.

(v) If $f \in S$, then $f(\underline{a}) = 0$ for every $\underline{a} \in V(S)$. If $\underline{a} \in X$, then $f(\underline{a}) = 0$ for every $f \in J(X)$.

(vi) Begin with (v), and apply *V* and (iii) [resp. *J* and (iv)]. For instance, applying *J* to $X \subset V(J(X))$ gives $J(X) \supset J(V(J(X)))$, and we have the other inclusion $J(X) \subset J(V(J(X)))$ by applying the first part of (v) to S := J(X).

In view of (v), the obvious question is *when are* X *and* S *closed*? — that is, when are these inclusions equalities? There is an obvious, again tautological, answer to half of this question:

IV.G.8. COROLLARY. X is k-Zariski closed exactly when it is a k-variety: $X = \overline{X} \iff X \in \mathcal{V}$.

PROOF. (\implies): X = V(J(X)) \implies X is a *k*-variety (duh).

$$(\underbrace{\longleftarrow}): \text{Say } X = V(\mathcal{S}). \text{ By IV.G.7(vi), } V(\mathcal{S}) = V(J(V(\mathcal{S}))) \implies X = V(J(X)) \ (= \overline{X}).$$

But the answer for S is considerably deeper; indeed, it is a corollary of the famous

IV.G.9. HILBERT'S NULLSTELLENSATZ (1893). For any
$$I \in \mathscr{I}$$
,
 $J(V(I)) = \operatorname{Rad}(I)$.

We will prove this below after some preparation. Note that it implies J(V(S)) = Rad((S)) for any $S \in \mathscr{S}$.

IV.G.10. COROLLARY. $S \in \mathscr{S}$ is closed precisely when it is a radical ideal: $S = \overline{S} \iff S \in \mathscr{R}$.

PROOF. (\implies): Use IV.G.4 and the hypothesis that S = J(V(S)). (\Leftarrow): Write S = I. By IV.G.9, $\overline{I} = J(V(I)) = \text{Rad}(I) = I$ (since $I \in \mathscr{R}$).

Using this result we obtain a clean parametrization of *k*-varieties in K^n by radical ideals in $k[x_1, ..., x_n]$:

IV.G.11. COROLLARY.
$$\mathscr{R} \rightleftharpoons_{J}^{V} \mathscr{V}$$
 is an inclusion-reversing bijection.

PROOF. For $I \in \mathcal{R}$, J(V(I)) = I by IV.G.10; and for $X \in \mathcal{V}$, V(J(X)) = X by IV.G.8.

In fact, the correspondence goes far beyond a bijection: for instance, in the HW you will show that

(IV.G.12)
$$V(\cap_i I_i) = \bigcup_i V(I_i) \text{ and } V(\sum_i I_i) = \cap V(I_i)$$

for any finite collection of ideals. Moreover, defining a *k*-variety to be **irreducible** if it cannot decompose as a union of two proper subsets which are both *k*-varieties, you will show the

IV.G.13. PROPOSITION. *V* and *J* put the irreducible *k*-varieties in bijection with \mathcal{P} .

The "rings of polynomial functions" we have been alluding to so far informally may now be codified as follows:

IV.G.14. DEFINITION. Let $X = V(I) \subset K^n$ be an affine *k*-variety, and $\mathfrak{F}(X)$ the set of *K*-valued functions on X. Writing $|_X$ for "restriction to X", the **ring of regular functions** on X or **coordinate ring** of X is defined by

$$k[X] := \operatorname{im}\{k[x_1, \dots, x_n] \xrightarrow{|X|} \mathfrak{F}(X)\}$$
$$\cong k[x_1, \dots, x_n] / \operatorname{ker}(|X)$$
$$\cong k[x_1, \dots, x_n] / J(X).$$

By the Nullstellensatz, we see at once that

(IV.G.15)
$$k[V(I)] \cong k[x_1, \dots, x_n] / \operatorname{Rad}(I).$$

If *I* is a radical ideal, with generators f_1, \ldots, f_m , and X is the variety described by $\bigcap_{i=1}^m \{\underline{a} \mid f_i(\underline{a}) = 0\}$, this takes the form

$$k[\mathbf{X}] = k[x_1, \dots, x_n] / (f_1, \dots, f_m).$$

It is left to you to describe what happens to X, and to this ring, when *I* has a nontrivial reduced primary decomposition.

Proving the Nullstellensatz.

We proceed by way of two lemmas which are of significant interest in their own right. Let R/k be a finitely generated ring extension. Write $\mathbb{F} := \mathfrak{F}\{R\}$ for its fraction field, and put $r := \operatorname{trdeg}(\mathbb{F}/k)$.

IV.G.16. NOETHER NORMALIZATION LEMMA. There exists an algebraically independent subset $\{t_1, \ldots, t_r\} \subset R$ such that R is integral over $k[t_1, \ldots, t_r]$.

IV.G.17. REMARK. Notice that by IV.F.19, this implies that the Krull dimension of *R* is *r*. If *R* is the coordinate ring of an affine variety $X \subset K^n$, the result can be thought of as saying that there is a *k*-linear projection $K^n \rightarrow K^r$ whose restriction to X presents it as a finite cover of affine *r*-space, along which the embedding

IV. COMMUTATIVE RINGS

 $k[t_1, \ldots, t_r] \hookrightarrow k[X] = R$ represents pullback of functions. In fact, as the first line of the proof demonstrates, we are always in this case:

PROOF. Let u_1, \ldots, u_n denote generators of R/k (as a ring); that is, there is a homomorphism $\pi \colon k[x_1, \ldots, x_n] \twoheadrightarrow R$ sending $x_i \mapsto u_i$. If it is an isomorphism, then the $\{u_i\}$ are algebraically independent, and furnish a transcendence basis for \mathbb{F}/k (and we are done).

Otherwise, $I := \ker(\theta)$ is a nonzero ideal, and $R \cong k[x_1, \ldots, x_n]/I$. Fix an element $\mathfrak{f}(\underline{x}) := \sum_{\underline{j} \in \mathfrak{J}} \kappa_{\underline{j}} \underline{x}^{\underline{j}} \in I \setminus \{0\}$, with $\kappa_{\underline{j}} \in k^*$ and $\mathfrak{J} \subset \mathbb{N}^n$ a finite index set, with all entries strictly bounded by some $c \in \mathbb{N}$. Writing $\sigma_{\underline{j}} := \sum_{i=1}^n c^{i-1} j_i$, the set $\{\sigma_{\underline{j}} \mid \underline{j} \in \mathfrak{J}\} \subset \mathbb{N}$ has the same cardinality¹⁰ as \mathfrak{J} and a maximal element $\sigma_{\underline{j}^*}$.

Now $\mathfrak{f}(\underline{u}) = \pi(\mathfrak{f}(\underline{x})) = 0$. Writing $u_i =: v_i + u_1^{c^{i-1}}$ for $2 \le i \le n$, this becomes $\kappa_{\underline{l}^*} u_1^{\sigma_{\underline{l}^*}} + f(u_1, v_2, \dots, v_n) = 0$, with $\deg_{u_1}(f) < \sigma_{\underline{l}^*}$. Denoting $R_1 := k[v_2, \dots, v_n] \subset R$, it follows that u_1 is integral over R_1 and (by IV.F.9(b)) that $R = R_1[u_1]$ is integral over R_1 . Moreover, \mathbb{F} is algebraic over $\mathbb{F}_1 := \mathfrak{F}\{R_1\}$ (why?).

At this point we repeat the argument from the beginning with R_1 and v_2, \ldots, v_n replacing R and u_1, \ldots, u_n . This obviously must terminate at some $R_{\ell} = k[w_{\ell+1}, \ldots, w_n]$, with the $\{w_i\}$ algebraically independent. Applying IV.F.9(c) to the tower of ring extensions, we get that R/R_{ℓ} is integral; and by I.N.6 (and the tower law), the $\{w_i\}$ are a transcendence basis for \mathbb{F} . So $r = n - \ell$ and we are done.

Before proving that the closure of a proper ideal (in the sense of IV.G.6(b)) is its radical, we first need to show that it remains proper. Equivalently, before we show that V(I) is a variety with ring of functions $k[x_1, ..., x_n]/\sqrt{I}$, we need to show that it contains a point:

IV.G.18. WEAK NULLSTELLENSATZ. Any proper ideal $I \subsetneq k[x_1, ..., x_n]$ has nonempty $V(I) \subset K^n$.

PROOF. Let *P* be a prime of $k[x_1, ..., x_n]$ containing *I*, so that $V(P) \subset V(I)$ by IV.G.7(iii). It will suffice to show that $V(P) \neq \emptyset$.

¹⁰Suppose $\sigma_j = \sigma_{j'}$. Then going mod *c* gives $c \mid j_1 - j'_1$ hence $j_1 = j'_1$ and $\sum_{i=2}^n c^{i-2} j_i = \sum_{i=2}^n c^{i-2} j'_i$. Going mod *c* again gives $j_2 = j'_2$, and so on until $\underline{j} = \underline{j'}$.

Write π : $k[x_1, ..., x_n] \twoheadrightarrow k[x_1, ..., x_n]/P =: R$ and $u_i := \pi(x_i)$. Since $P \cap k = \{0\}$, we may identify k with its image. Noether normalization produces $t_1, ..., t_r \in R$, algebraically independent over k, such that R is integral over the polynomial ring $S := k[t_1, ..., t_r]$.

The kernel of the evaluation map $S \twoheadrightarrow k$ sending $t_i \mapsto 0$ is the ideal $\mathfrak{m} := (t_1, \ldots, t_r)$ consisting of polynomials with zero constant term. So $S/\mathfrak{m} \cong k$ and \mathfrak{m} is maximal. By the Lying-over theorem IV.F.16, there is a prime $\mathfrak{n} \subset R$ with $\mathfrak{n} \cap S = \mathfrak{m}$; by IV.F.21, \mathfrak{n} is maximal, and $R/\mathfrak{n} =: \tilde{k}$ a field. Using the diagram

$$k \cong S/(\mathfrak{n} \cap S) \longrightarrow R/\mathfrak{n} = \tilde{k}$$

$$\uparrow \qquad \qquad \uparrow =:\tau$$

$$S \longrightarrow R$$

we see at once that \tilde{k}/k is an algebraic extension: lift an element of \tilde{k} to R, write down its monic equation over S, and apply the upward arrows. So there exists an embedding $\sigma : \tilde{k} \hookrightarrow \bar{k} \subset K$.

Writing ϕ for the composition

$$k[x_1,\ldots,x_n] \xrightarrow{\pi} R \xrightarrow{\tau} \tilde{k} \xrightarrow{\sigma} K,$$

we note that it kills *P* and is the identity on *k*. So for each $f \in P$, we have $f(\phi(x_1), \dots, \phi(x_n)) = \phi(f(x_1, \dots, x_n)) = 0$, whence $(\phi(x_1), \dots, \phi(x_n)) \in V(P)$.

IV.G.19. REMARK. Geometrically, one should think of R as the coordinate ring of the irreducible variety $X \subset K^n$ defined by P. Homomorphisms from $k[x_1, \ldots, x_n]$ to K are evaluation maps at points of K^n , i.e. pullback maps along the inclusion of a point in K^n . To say that a homomorphism factors through $R = k[x_1, \ldots, x_n]/P$ is to say this point is in X.

The mechanism by which this proof produced a homomorphism from *R* to *K* was, in geometric terms, to present X as a finite branched cover β : X \rightarrow *K*^{*r*}, and exhibit a point of $\beta^{-1}(\underline{0})$. The map from $\beta^{-1}(\underline{0})$ to $\underline{0}$ is "dual" to $k \hookrightarrow \tilde{k}$, and the choice of embedding $\tilde{k} \hookrightarrow K$ over kwas the choice of a point in $\beta^{-1}(\underline{0})$. Finally, turning to the Nullstellensatz itself:

PROOF OF IV.G.9. We may assume $I \subsetneq k[\underline{x}] := k[x_1, ..., x_n]$ is a proper ideal, since otherwise we are done by IV.G.7(i-ii). Moreover, it's easy to see that $\text{Rad}(I) \subset J(V(I))$: if $f^m \in I$, then since $I \subset J(V(I))$ (by IV.G.7(v)) and J(V(I)) is radical (by IV.G.4), we have $f \in J(V(I))$.

Suppose, conversely, that $f \in J(V(I)) \setminus \{0\}$. Consider the ideals $\tilde{I} := k[\underline{x}, y]I$ and $J := (yf - 1) + \tilde{I} \subset k[\underline{x}, y]$ in the polynomial ring in (n + 1) variables. Given $(\underline{a}, b) \in V(J) \subset K^{n+1}$, we have:

• $\underline{a} \in V(I)$, since $J \supset \tilde{I} \implies V(J) \subset V(\tilde{I}) = V(I) \times K$; and

•
$$(\underline{a}, b) \in V(yf - 1)$$
, since $J \supset (yf - 1)$.

This gives $0 = bf(\underline{a}) - 1 = b \cdot 0 - 1 = -1$, a contradiction. So $V(J) = \emptyset$. But then, by the weak Nullstellensatz, *J* cannot be a proper ideal! That is, $J = k[\underline{x}, y]$; so $1 \in J$, whence

(IV.G.20)
$$1 = (yf - 1)g_0 + \sum_{i=1}^{\ell} g_i f_i$$

for some $f_i \in I$ and $g_i \in k[\underline{x}, y]$.

Now define a homomorphism θ : $k[\underline{x}, y] \rightarrow k(\underline{x})$ (over k) by sending $x_i \mapsto x_i$ and $y \mapsto \frac{1}{f(x)}$. Applying this to (IV.G.20) yields

$$1 = \left(\frac{1}{f}f - 1\right)g_0(\underline{x}, \frac{1}{f}) + \sum_{i=1}^{\ell} g_i(\underline{x}, \frac{1}{f})f_i(\underline{x}) = \sum_{i=1}^{\ell} g_i(\underline{x}, \frac{1}{f})f_i(\underline{x}).$$

Taking $m := \max(\{\deg_y(g_i)\}_{i=1}^{\ell})$, so that $f^m(\underline{x})g_i(\underline{x}, \frac{1}{f}) \in k[\underline{x}]$, we get

$$f^m = f^m \cdot 1 = \sum_{i=1}^{\ell} f^m(\underline{x}) g_i(\underline{x}, \frac{1}{f}) f_i(\underline{x}) \in I.$$

Hence $f \in \text{Rad}(I)$ and the proof is complete.