IV.G. Affine varieties

In this final section, we make explicit the correspondence between algebraic spaces and rings (of functions on them). Fix a field k, an algebraically closed field $K \supset k$, and a positive integer n.
IV.G.1. DEfinition. Let $\mathcal{S} \subset k\left[x_{1}, \ldots, x_{n}\right]$ be a subset. The (affine) \boldsymbol{k}-variety defined by \mathcal{S} is

$$
V(\mathcal{S}):=\left\{\underline{a} \in K^{n} \mid f(\underline{a})=0(\forall f \in \mathcal{S})\right\}
$$

the common zero-locus of the polynomials in \mathcal{S}.
Algebraic geometry has its origins in the study of such solution sets of polynomial equations. Here "affine" refers to the affine n space K^{n} (or " \mathbb{A}_{K}^{n} ") in which our varieties lie, as opposed (for example) to projective n-space \mathbb{P}_{K}^{n}. I should mention that, when algebraic geometers talk about a variety W, they really mean an object called a scheme that has more structure; the K-points would then be written $W(K)$. For us there is no difference - it makes no sense to get that sophisticated in a brief treatment - but this does force us to work with points over an algebraically closed field.
IV.G.2. Proposition. Any variety is defined by a finite set of equations.

Proof. Writing (\mathcal{S}) for the ideal generated by \mathcal{S} in $k\left[x_{1}, \ldots, x_{n}\right]$, we have $V(\mathcal{S})=V((\mathcal{S}))$. By the Hilbert basis theorem, (\mathcal{S}) is finitely generated, say by f_{1}, \ldots, f_{m}; and then $V(\mathcal{S})=V\left(\left\{f_{1}, \ldots, f_{m}\right\}\right)$.

We can also turn things around:
IV.G.3. Definition. The vanishing ideal associated to a subset $\mathrm{X} \subset K^{n}$ is

$$
J(\mathrm{X}):=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right] \mid f(\underline{a})=0(\forall \underline{a} \in X)\right\} .
$$

IV.G.4. Proposition. For any $\mathrm{X}, \mathrm{J}(\mathrm{X})$ is a radical ideal.

Proof. First, the vanishing ideal is in fact an ideal: if $f_{i}(\underline{a})=0$ $(\forall a \in X)$, and $g_{i} \in k\left[x_{1}, \ldots, x_{n}\right]$, then $\left(\sum_{i} g_{i} f_{i}\right)(\underline{a})=0(\forall \underline{a} \in X)$. To
see that it is its own radical: if $\left(f^{n}\right)(\underline{a})=0(\forall \underline{a} \in X)$, then $f(\underline{a})=0$ $(\forall \underline{a} \in X)$.

We have inclusions of sets
$\mathscr{S}:=$ set of subsets of $k\left[x_{1}, \ldots, x_{n}\right]$
$\mathscr{I}:=$ set of ideals in $k\left[x_{1}, \ldots, x_{n}\right]$
\cup
$\mathscr{R}:=$ set of radical ideals $\quad \mathscr{X}:=$ set of subsets of K^{n}
$\mathscr{P}:=$ set of prime ideals $\quad \mathscr{V}:=$ set of K-varieties
Here \mathscr{P} is often called the spectrum of $k\left[x_{1}, \ldots, x_{n}\right]$, and written $\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)$. Definitions IV.G. 1 and IV.G. 3 produce maps

$$
\begin{aligned}
V: \mathscr{S} & \rightarrow \mathscr{V} & \text { and } & J: \mathscr{X}
\end{aligned}>\mathscr{R}, ~ \begin{aligned}
I & \mapsto V(I) & &
\end{aligned}
$$

This is of course far from a bijection at this level: certainly, $J \circ V$ can't send a non-radical ideal to itself; and for the other composition $V \circ J$, the situation is even worse.
IV.G.5. EXAMPLE. In \mathbb{C}^{2}, if we take X to be $\left\{\left.\underline{a} \in \mathbb{C}^{2}| | a_{1}\right|^{2}+\right.$ $\left.\left|a_{2}\right|^{2} \leq 1\right\}$ or $\left\{\underline{a} \in \mathbb{C}^{2} \mid a_{1}=e^{a_{2}}\right\}$ or $\mathbf{Q} \times \mathbb{Q}$, we end up (regardless of k) with $J(\mathrm{X})=\{0\}$ hence $V(J(\mathrm{X}))=\mathbb{C}^{2}$. This can also depend on the choice of k : for instance, if $k=\mathbb{Q}$ and $n=1$, and $X=\{\pi\}$ [resp. $\{\sqrt{5}\}]$, then we get $V(J(X))=\mathbb{C}[\operatorname{resp} .\{\sqrt{5},-\sqrt{5}\}] .{ }^{9}$
IV.G.6. Definition. (a) Given a subset $\mathrm{X} \subset K^{n}$, the variety $\overline{\mathrm{X}}:=$ $V(J(\mathrm{X})) \subset K^{n}$ is called the \boldsymbol{k}-Zariski closure of X . It is the intersection of all k-varieties (equiv., the smallest k-variety) containing X.
(b) Similarly, we can define the closure of a set $\mathcal{S} \in \mathscr{S}$ by $\overline{\mathcal{S}}:=$ $J(V(\mathcal{S}))$. Clearly, the ideal generated by \mathcal{S} is contained in $\overline{\mathcal{S}}$.

[^0]As to what one can say right off the bat about V and J, here is what follows (mostly) tautologically from the definitions. Note in particular the inclusion-reversing property (iii-iv):
IV.G.7. Proposition. Let $\mathcal{S}, \mathcal{T} \in \mathscr{S}$, and $\mathrm{X}, \mathrm{Y} \in \mathscr{X}$.
(i) $V\left(k\left[x_{1}, \ldots, x_{n}\right]\right)=\varnothing$ and $V((0))=K^{n}$.
(ii) $J(\varnothing)=k\left[x_{1}, \ldots, x_{n}\right]$ and $J\left(K^{n}\right)=(0)$.
(iii) $\mathcal{S} \subset \mathcal{T} \Longrightarrow V(\mathcal{T}) \subset V(\mathcal{S})$.
(iv) $\mathrm{X} \subset \mathrm{Y} \Longrightarrow J(\mathrm{Y}) \subset J(\mathrm{X})$.
(v) $\mathcal{S} \subset J(V(\mathcal{S}))=\overline{\mathcal{S}}$ and $\mathrm{X} \subset V(J(\mathrm{X}))=\overline{\mathrm{X}}$.
(vi) $V(\mathcal{S})=V(J(V(\mathcal{S})))$ and $J(\mathrm{X})=J(V(J(\mathrm{X})))$.

PROOF. (i) 1 vanishes nowhere, while 0 vanishes everywhere.
(ii) K is infinite (since algebraically closed), so any nonzero polynomial takes a nonzero value somewhere by [Algebra I, III.G.23]. This gives $J\left(K^{n}\right)=\{0\}$.
(iii) Given $\underline{a} \in V(\mathcal{T})$, every $f \in \mathcal{T}$ vanishes at \underline{a}; so every $f \in \mathcal{S}$ vanishes at \underline{a}, and $\underline{a} \in V(\mathcal{S})$.
(iv) Given $f \in J(\mathrm{Y})$, we have $f(\underline{a})=0(\forall \underline{a} \in \mathrm{Y})$, hence $f(\underline{a})=0$ ($\forall \underline{a} \in X$); thus $f \in J(X)$.
(v) If $f \in \mathcal{S}$, then $f(\underline{a})=0$ for every $\underline{a} \in V(\mathcal{S})$. If $\underline{a} \in X$, then $f(\underline{a})=0$ for every $f \in J(X)$.
(vi) Begin with (v), and apply V and (iii) [resp. J and (iv)]. For instance, applying J to $\mathrm{X} \subset V(J(\mathrm{X}))$ gives $J(\mathrm{X}) \supset J(V(J(\mathrm{X})))$, and we have the other inclusion $J(\mathrm{X}) \subset J(V(J(\mathrm{X})))$ by applying the first part of (v) to $\mathcal{S}:=J(\mathrm{X})$.

In view of (v), the obvious question is when are X and \mathcal{S} closed? - that is, when are these inclusions equalities? There is an obvious, again tautological, answer to half of this question:
IV.G.8. Corollary. X is k-Zariski closed exactly when it is a k variety: $X=\bar{X} \Longleftrightarrow X \in \mathscr{V}$.

Proof. $(\Longrightarrow): \mathrm{X}=V(J(\mathrm{X})) \Longrightarrow \mathrm{X}$ is a k-variety (duh).
$\quad \begin{aligned} & (\Longleftarrow): ~ S a y ~ \\ & X\end{aligned}=V(\mathcal{S})$. By IV.G.7(vi), $V(\mathcal{S})=V(J(V(\mathcal{S}))) \Longrightarrow$
But the answer for \mathcal{S} is considerably deeper; indeed, it is a corollary of the famous
IV.G.9. Hilbert's Nullstellensatz (1893). For any $I \in \mathscr{I}$,

$$
J(V(I))=\operatorname{Rad}(I) .
$$

We will prove this below after some preparation. Note that it implies $J(V(\mathcal{S}))=\operatorname{Rad}((\mathcal{S}))$ for any $\mathcal{S} \in \mathscr{S}$.
IV.G.10. Corollary. $\mathcal{S} \in \mathscr{S}$ is closed precisely when it is a radical ideal: $\mathcal{S}=\overline{\mathcal{S}} \Longleftrightarrow \mathcal{S} \in \mathscr{R}$.

Proof. (\Longrightarrow) : Use IV.G. 4 and the hypothesis that $\mathcal{S}=J(V(\mathcal{S}))$. (\Longleftarrow) : Write $\mathcal{S}=I$. By IV.G.9, $\bar{I}=J(V(I))=\operatorname{Rad}(I)=I$ (since $I \in \mathscr{R}$).

Using this result we obtain a clean parametrization of k-varieties in K^{n} by radical ideals in $k\left[x_{1}, \ldots, x_{n}\right]$:
IV.G.11. COROLLARY. $\mathscr{R} \underset{J}{\stackrel{V}{\rightleftarrows}} \mathscr{V}$ is an inclusion-reversing bijection.

Proof. For $I \in \mathscr{R}, J(V(I))=I$ by IV.G.10; and for $\mathrm{X} \in \mathscr{V}$, $V(J(X))=X$ by IV.G.8.

In fact, the correspondence goes far beyond a bijection: for instance, in the HW you will show that

$$
\begin{equation*}
V\left(\cap_{i} I_{i}\right)=\cup_{i} V\left(I_{i}\right) \text { and } V\left(\sum_{i} I_{i}\right)=\cap V\left(I_{i}\right) \tag{IV.G.12}
\end{equation*}
$$

for any finite collection of ideals. Moreover, defining a k-variety to be irreducible if it cannot decompose as a union of two proper subsets which are both k-varieties, you will show the
IV.G.13. Proposition. V and J put the irreducible k-varieties in bijection with \mathscr{P}.

The "rings of polynomial functions" we have been alluding to so far informally may now be codified as follows:
IV.G.14. Definition. Let $\mathrm{X}=V(I) \subset K^{n}$ be an affine k-variety, and $\mathfrak{F}(X)$ the set of K-valued functions on X. Writing $\left.\right|_{\mathrm{X}}$ for "restriction to $X^{\prime \prime}$, the ring of regular functions on X or coordinate ring of X is defined by

$$
\begin{aligned}
k[\mathrm{X}] & : \\
& =\operatorname{im}\left\{k\left[x_{1}, \ldots, x_{n}\right] \xrightarrow{\mid \mathrm{X}} \mathfrak{F}(\mathrm{X})\right\} \\
& \cong k\left[x_{1}, \ldots, x_{n}\right] / \operatorname{ker}(\mid \mathrm{x}) \\
& \cong k\left[x_{1}, \ldots, x_{n}\right] / J(\mathrm{X}) .
\end{aligned}
$$

By the Nullstellensatz, we see at once that

$$
\begin{equation*}
k[V(I)] \cong k\left[x_{1}, \ldots, x_{n}\right] / \operatorname{Rad}(I) \tag{IV.G.15}
\end{equation*}
$$

If I is a radical ideal, with generators f_{1}, \ldots, f_{m}, and X is the variety described by $\cap_{i=1}^{m}\left\{\underline{a} \mid f_{i}(\underline{a})=0\right\}$, this takes the form

$$
k[\mathrm{X}]=k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{m}\right)
$$

It is left to you to describe what happens to X, and to this ring, when I has a nontrivial reduced primary decomposition.

Proving the Nullstellensatz.

We proceed by way of two lemmas which are of significant interest in their own right. Let R / k be a finitely generated ring extension. Write $\mathbb{F}:=\mathfrak{F}\{R\}$ for its fraction field, and put $r:=\operatorname{trdeg}(\mathbb{F} / k)$.
IV.G.16. Noether Normalization Lemma. There exists an algebraically independent subset $\left\{t_{1}, \ldots, t_{r}\right\} \subset R$ such that R is integral over $k\left[t_{1}, \ldots, t_{r}\right]$.
IV.G.17. Remark. Notice that by IV.F.19, this implies that the Krull dimension of R is r. If R is the coordinate ring of an affine variety $\mathrm{X} \subset K^{n}$, the result can be thought of as saying that there is a k-linear projection $K^{n} \rightarrow K^{r}$ whose restriction to X presents it as a finite cover of affine r-space, along which the embedding
$k\left[t_{1}, \ldots, t_{r}\right] \hookrightarrow k[\mathrm{X}]=R$ represents pullback of functions. In fact, as the first line of the proof demonstrates, we are always in this case:

PROOF. Let u_{1}, \ldots, u_{n} denote generators of R / k (as a ring); that is, there is a homomorphism $\pi: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow R$ sending $x_{i} \mapsto u_{i}$. If it is an isomorphism, then the $\left\{u_{i}\right\}$ are algebraically independent, and furnish a transcendence basis for \mathbb{F} / k (and we are done).

Otherwise, $I:=\operatorname{ker}(\theta)$ is a nonzero ideal, and $R \cong k\left[x_{1}, \ldots, x_{n}\right] / I$. Fix an element $\mathfrak{f}(\underline{x}):=\sum_{\jmath \in \mathfrak{J}} \kappa_{\underline{\jmath}} \underline{x}-\underline{\underline{l}} \in I \backslash\{0\}$, with $\kappa_{\underline{\jmath}} \in k^{*}$ and $\mathfrak{J} \subset \mathbb{N}^{n}$ a finite index set, with all entries strictly bounded by some $c \in \mathbb{N}$. Writing $\sigma_{j}:=\sum_{i=1}^{n} c^{i-1} J_{i}$, the set $\left\{\sigma_{j} \mid \underline{\jmath} \in \mathfrak{J}\right\} \subset \mathbb{N}$ has the same cardinality ${ }^{10}$ as \mathfrak{J} and a maximal element $\sigma_{J^{*}}$.

Now $\mathfrak{f}(\underline{u})=\pi(\mathfrak{f}(\underline{x}))=0$. Writing $u_{i}=: v_{i}+u_{1}^{c^{i-1}}$ for $2 \leq i \leq n$, this becomes $\kappa_{\underline{p}^{*}} u_{1}^{\sigma_{J^{*}}}+f\left(u_{1}, v_{2}, \ldots, v_{n}\right)=0$, with $\operatorname{deg}_{u_{1}}(f)<\sigma_{\underline{J}^{*}}$. Denoting $R_{1}:=k\left[v_{2}, \ldots, v_{n}\right] \subset R$, it follows that u_{1} is integral over R_{1} and (by IV.F.9(b)) that $R=R_{1}\left[u_{1}\right]$ is integral over R_{1}. Moreover, \mathbb{F} is algebraic over $\mathbb{F}_{1}:=\mathfrak{F}\left\{R_{1}\right\}$ (why?).

At this point we repeat the argument from the beginning with R_{1} and v_{2}, \ldots, v_{n} replacing R and u_{1}, \ldots, u_{n}. This obviously must terminate at some $R_{\ell}=k\left[w_{\ell+1}, \ldots, w_{n}\right]$, with the $\left\{w_{i}\right\}$ algebraically independent. Applying IV.F.9(c) to the tower of ring extensions, we get that R / R_{ℓ} is integral; and by I.N. 6 (and the tower law), the $\left\{w_{i}\right\}$ are a transcendence basis for \mathbb{F}. So $r=n-\ell$ and we are done.

Before proving that the closure of a proper ideal (in the sense of IV.G.6(b)) is its radical, we first need to show that it remains proper. Equivalently, before we show that $V(I)$ is a variety with ring of functions $k\left[x_{1}, \ldots, x_{n}\right] / \sqrt{I}$, we need to show that it contains a point:
IV.G.18. Weak Nullstellensatz. Any proper ideal $I \subsetneq k\left[x_{1}, \ldots, x_{n}\right]$ has nonempty $V(I) \subset K^{n}$.

Proof. Let P be a prime of $k\left[x_{1}, \ldots, x_{n}\right]$ containing I, so that $V(P) \subset V(I)$ by IV.G.7(iii). It will suffice to show that $V(P) \neq \varnothing$.

[^1]Write $\pi: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow k\left[x_{1}, \ldots, x_{n}\right] / P=: R$ and $u_{i}:=\pi\left(x_{i}\right)$. Since $P \cap k=\{0\}$, we may identify k with its image. Noether normalization produces $t_{1}, \ldots, t_{r} \in R$, algebraically independent over k, such that R is integral over the polynomial ring $S:=k\left[t_{1}, \ldots, t_{r}\right]$.

The kernel of the evaluation map $S \rightarrow k$ sending $t_{i} \mapsto 0$ is the ideal $\mathfrak{m}:=\left(t_{1}, \ldots, t_{r}\right)$ consisting of polynomials with zero constant term. So $S / \mathfrak{m} \cong k$ and \mathfrak{m} is maximal. By the Lying-over theorem IV.F.16, there is a prime $\mathfrak{n} \subset R$ with $\mathfrak{n} \cap S=\mathfrak{m}$; by IV.F.21, \mathfrak{n} is maximal, and $R / \mathfrak{n}=: \tilde{k}$ a field. Using the diagram

we see at once that \tilde{k} / k is an algebraic extension: lift an element of \tilde{k} to R, write down its monic equation over S, and apply the upward arrows. So there exists an embedding $\sigma: \tilde{k} \hookrightarrow \bar{k} \subset K$.

Writing ϕ for the composition

$$
k\left[x_{1}, \ldots, x_{n}\right] \xrightarrow{\pi} R \xrightarrow{\tau} \tilde{k} \stackrel{\sigma}{\hookrightarrow} K,
$$

we note that it kills P and is the identity on k. So for each $f \in$ P, we have $f\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right)=\phi\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=0$, whence $\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right) \in V(P)$.
IV.G.19. REmARK. Geometrically, one should think of R as the coordinate ring of the irreducible variety $\mathrm{X} \subset K^{n}$ defined by P. Homomorphisms from $k\left[x_{1}, \ldots, x_{n}\right]$ to K are evaluation maps at points of K^{n}, i.e. pullback maps along the inclusion of a point in K^{n}. To say that a homomorphism factors through $R=k\left[x_{1}, \ldots, x_{n}\right] / P$ is to say this point is in X.

The mechanism by which this proof produced a homomorphism from R to K was, in geometric terms, to present X as a finite branched cover $\beta: X \rightarrow K^{r}$, and exhibit a point of $\beta^{-1}(\underline{0})$. The map from $\beta^{-1}(\underline{0})$ to $\underline{0}$ is "dual" to $k \hookrightarrow \tilde{k}$, and the choice of embedding $\tilde{k} \hookrightarrow K$ over k was the choice of a point in $\beta^{-1}(\underline{0})$.

Finally, turning to the Nullstellensatz itself:
Proof of IV.G.9. We may assume $I \subsetneq k[\underline{x}]:=k\left[x_{1}, \ldots, x_{n}\right]$ is a proper ideal, since otherwise we are done by IV.G.7(i-ii). Moreover, it's easy to see that $\operatorname{Rad}(I) \subset J(V(I))$: if $f^{m} \in I$, then since $I \subset$ $J(V(I))$ (by IV.G.7(v)) and $J(V(I))$ is radical (by IV.G.4), we have $f \in J(V(I))$.

Suppose, conversely, that $f \in J(V(I)) \backslash\{0\}$. Consider the ideals $\tilde{I}:=k[\underline{x}, y] I$ and $J:=(y f-1)+\tilde{I} \subset k[\underline{x}, y]$ in the polynomial ring in $(n+1)$ variables. Given $(\underline{a}, b) \in V(J) \subset K^{n+1}$, we have:

- $\underline{a} \in V(I)$, since $J \supset \tilde{I} \Longrightarrow V(J) \subset V(\tilde{I})=V(I) \times K$; and
- $(\underline{a}, b) \in V(y f-1)$, since $J \supset(y f-1)$.

This gives $0=b f(\underline{a})-1=b \cdot 0-1=-1$, a contradiction. So $V(J)=$ \varnothing. But then, by the weak Nullstellensatz, J cannot be a proper ideal! That is, $J=k[\underline{x}, y]$; so $1 \in J$, whence

$$
\begin{equation*}
1=(y f-1) g_{0}+\sum_{i=1}^{\ell} g_{i} f_{i} \tag{IV.G.20}
\end{equation*}
$$

for some $f_{i} \in I$ and $g_{i} \in k[\underline{x}, y]$.
Now define a homomorphism $\theta: k[\underline{x}, y] \rightarrow k(\underline{x})$ (over k) by sending $x_{i} \mapsto x_{i}$ and $y \mapsto \frac{1}{f(\underline{x})}$. Applying this to (IV.G.20) yields

$$
1=\left(\frac{1}{f} f-1\right) g_{0}\left(\underline{x}, \frac{1}{f}\right)+\sum_{i=1}^{\ell} g_{i}\left(\underline{x}, \frac{1}{f}\right) f_{i}(\underline{x})=\sum_{i=1}^{\ell} g_{i}\left(\underline{x}, \frac{1}{f}\right) f_{i}(\underline{x}) .
$$

Taking $m:=\max \left(\left\{\operatorname{deg}_{y}\left(g_{i}\right)\right\}_{i=1}^{\ell}\right)$, so that $f^{m}(\underline{x}) g_{i}\left(\underline{x}, \frac{1}{f}\right) \in k[\underline{x}]$, we get

$$
f^{m}=f^{m} \cdot 1=\sum_{i=1}^{\ell} f^{m}(\underline{x}) g_{i}\left(\underline{x}, \frac{1}{f}\right) f_{i}(\underline{x}) \in I .
$$

Hence $f \in \operatorname{Rad}(I)$ and the proof is complete.

[^0]: ${ }^{9}$ You should be able to supply proofs of these statements, using the fact that a polynomial in one variable has finitely many roots, together with LindemannWeierstrass etc.

[^1]: $\overline{{ }^{10} \text { Suppose } \sigma_{J}}=\sigma_{\jmath^{\prime}}$. Then going mod c gives $c \mid \jmath_{1}-\jmath_{1}^{\prime}$ hence $\jmath_{1}=\jmath_{1}^{\prime}$ and $\sum_{i=2}^{n} c^{i-2} J_{i}=\sum_{i=2}^{n} c^{i-2} \jmath_{i}^{\prime}$. Going mod c again gives $\jmath_{2}=\jmath_{2}^{\prime}$, and so on until $\underline{\jmath}=\underline{\jmath}^{\prime}$.

