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IV.G. Affine varieties

In this final section, we make explicit the correspondence be-
tween algebraic spaces and rings (of functions on them). Fix a field
k, an algebraically closed field K D k, and a positive integer n.

IV.G.1. DEFINITION. LetS C k[x, ..., x,] be a subset. The (affine)
k-variety defined by S is

V(S):={ac K" [ f(a) =0 (VfeS)}
the common zero-locus of the polynomials in S.

Algebraic geometry has its origins in the study of such solution
sets of polynomial equations. Here “affine” refers to the affine n-
space K" (or “A%”) in which our varieties lie, as opposed (for exam-
ple) to projective n-space IP%. I should mention that, when algebraic
geometers talk about a variety W, they really mean an object called
a scheme that has more structure; the K-points would then be written
W(K). For us there is no difference — it makes no sense to get that
sophisticated in a brief treatment — but this does force us to work
with points over an algebraically closed field.

IV.G.2. PROPOSITION. Any variety is defined by a finite set of equa-
tions.

PROOF. Writing (S) for the ideal generated by S in k[x1, ..., xy],
wehave V(S) = V((S)). By the Hilbert basis theorem, (S) is finitely
generated, say by f1,..., fu; and then V(S) =V({f1,..., fm}). O

We can also turn things around:

IV.G.3. DEFINITION. The vanishing ideal associated to a subset
X CK"is

JX) :={f €klx1,...,xa] | f(a) =0 (Va € X)}.
IV.G.4. PROPOSITION. For any X, J(X) is a radical ideal.

PROOF. First, the vanishing ideal is in fact an ideal: if f;(a) = 0
(Va € X), and g; € k[x1,...,x,), then (¥;gifi)(a) = 0 (Va € X). To
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see that it is its own radical: if (f")(a) = 0 (Va € X), then f(a) = 0
(Va € X). O

We have inclusions of sets

& := set of subsets of k[x1, ..., x,]
U

 :=setof ideals in k[x1, ..., xy]
U

Z = set of radical ideals 2 := set of subsets of K"
U U

& = set of prime ideals ¥ := set of K-varieties

Here & is often called the spectrum of k[xy,...,x,], and written
Spec(k[x1, ..., xu]). Definitions IV.G.1 and IV.G.3 produce maps

Vi = and ] Z =%
I— V(I) X J(X).

This is of course far from a bijection at this level: certainly, [ o V can’t
send a non-radical ideal to itself; and for the other composition V o J,
the situation is even worse.

IV.G.5. EXAMPLE. In C?, if we take X to be {a € C? | |ny|> +
az)?> < 1} or {a € C? | a1 = e2} or Q x Q, we end up (regardless
of k) with J(X) = {0} hence V(J(X)) = C2. This can also depend on
the choice of k: for instance, if k = Q and n = 1, and X = {7t} [resp.

{V/5}], then we get V(J(X)) = C [resp. {/5, —/5}].]

IV.G.6. DEFINITION. (a) Given a subset X C K", the variety X :=
V(J(X)) C K" is called the k-Zariski closure of X. It is the intersec-
tion of all k-varieties (equiv., the smallest k-variety) containing X.

(b) Similarly, we can define the closure of a set S € . by S :=
J(V(S)). Clearly, the ideal generated by S is contained in S.
9You should be able to supply proofs of these statements, using the fact that a

polynomial in one variable has finitely many roots, together with Lindemann-
Weierstrass etc.
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As to what one can say right off the bat about V and ], here is
what follows (mostly) tautologically from the definitions. Note in
particular the inclusion-reversing property (iii-iv):

IV.G.7. PROPOSITION. Let S, T € %, and X,Y € Z".
(1) V(k[xy,...,xn]) = Dand V((0)) = K".
(i) J(D) = k[x1,...,xu] and J(K") = (0).
i)SC T = V(T) CV(S).
(ivyXCY = ](ch J(X). B
V)SCJV(S) =Sand X C V(J(X)) =X
(vi) V(S) = V(J(V(S))) and J(X) = J(V(J(X))).

PROOF. (i) 1 vanishes nowhere, while 0 vanishes everywhere.

(ii) K is infinite (since algebraically closed), so any nonzero polyno-
mial takes a nonzero value somewhere by [Algebra I, II1.G.23]. This
gives J(K") = {0}.

(iii) Given a € V(T ), every f € T vanishes at g; so every f € S
vanishes ata, and a € V(S).

(iv) Given f € J(Y), we have f(a) = 0 (Va € Y), hence f(a) = 0
(Va € X); thus f € J(X).

) If f € S, then f(a) = 0 for everya € V(S). If a € X, then
f(a) = 0 for every f € J(X).

(vi) Begin with (v), and apply V and (iii) [resp. | and (iv)]. For in-
stance, applying J to X C V(J(X)) gives J(X) D J(V(J(X))), and
we have the other inclusion J(X) C J(V(J(X))) by applying the first
part of (v) to S := J(X). O

In view of (v), the obvious question is when are X and S closed?
— that is, when are these inclusions equalities? There is an obvious,
again tautological, answer to half of this question:

IV.G.8. COROLLARY. X is k-Zariski closed exactly when it is a k-
variety: X = X < X € 7.

PROOF. (= ): X =V(J(X)) = Xis a k-variety (duh).
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(<=): Say X = V(S). By IV.G.7(vi), V(S) = V(J(V(S))) =
X = V(X)) (=X). O

But the answer for S is considerably deeper; indeed, it is a corol-
lary of the famous

IV.G.9. HILBERT’S NULLSTELLENSATZ (1893). Forany I € .7,
J(V(I)) = Rad(I).

We will prove this below after some preparation. Note that it
implies J(V(S)) = Rad((S)) forany S € ..

IV.G.10. COROLLARY. S € . is closed precisely when it is a radical
ideal: S =S < S € %.

PROOF. (= ): Use IV.G.4 and the hypothesis that S = J(V(S5)).
(<) Write S = I. By IV.G.9, I = J(V(I)) = Rad(I) = I (since
[ € R). 0

Using this result we obtain a clean parametrization of k-varieties
in K" by radical ideals in k[x1, ..., x4]:
14

IV.G.11. COROLLARY. # = V'isan inclusion-reversing bijection.
J

PROOF. For I € %, J(V(I)) = I by IV.G.10; and for X € ¥,
V(J(X)) = X by IV.G.8. O

In fact, the correspondence goes far beyond a bijection: for in-
stance, in the HW you will show that

(IV.G.12) V(n;L) =U; V(L) and V(Y L) =NV(L)

for any finite collection of ideals. Moreover, defining a k-variety to be
irreducible if it cannot decompose as a union of two proper subsets
which are both k-varieties, you will show the

IV.G.13. PROPOSITION. V and | put the irreducible k-varieties in bi-
jection with &.
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The “rings of polynomial functions” we have been alluding to so
far informally may now be codified as follows:

IV.G.14. DEFINITION. Let X = V(I) C K" be an affine k-variety,
and §(X) the set of K-valued functions on X. Writing |x for “restric-

tion to X”, the ring of regular functions on X or coordinate ring of
X is defined by

k[X] : = im{k[xq, ..., x4] |43(><)}
k[x1,...,x4]/ ker(|x)
= kix1,...,xn]/J(X).

1%

By the Nullstellensatz, we see at once that
(IV.G.15) k[V(I)] = k[x1,...,x,]/Rad(I).

If I is a radical ideal, with generators f, ..., fi, and X is the variety
described by N, {a | fi(a) = 0}, this takes the form

k[X] =k[x1,...,xn]/ (f1,---) fm)-

It is left to you to describe what happens to X, and to this ring, when
I has a nontrivial reduced primary decomposition.

Proving the Nullstellensatz.

We proceed by way of two lemmas which are of significant inter-
est in their own right. Let R/k be a finitely generated ring extension.
Write IF := F{R} for its fraction field, and put r := trdeg(FF/k).

IV.G.16. NOETHER NORMALIZATION LEMMA. There exists an al-
gebraically independent subset {t1,...,t,} C R such that R is integral
over klt1, ..., t].

IV.G.17. REMARK. Notice that by IV.E19, this implies that the
Krull dimension of R is r. If R is the coordinate ring of an affine
variety X C K", the result can be thought of as saying that there
is a k-linear projection K" — K" whose restriction to X presents
it as a finite cover of affine r-space, along which the embedding
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k[t1,...,tr] < k[X] = R represents pullback of functions. In fact,
as the first line of the proof demonstrates, we are always in this case:

PROOF. Let uy,...,u, denote generators of R/k (as a ring); that
is, there is a homomorphism 7: k[x1,...,x,] — R sending x; — u;.
If it is an isomorphism, then the {u;} are algebraically independent,
and furnish a transcendence basis for [F/k (and we are done).

Otherwise, I := ker(6) is anonzeroideal, and R = k[x1, ..., x,]/I.
Fix an element f(x) := ¥ cy %2l € I\{0}, withx; € k" and J C N"
a finite index set, with all entries strictly bounded by some ¢ € IN.
Writing 0, := Y7, ¢'"1j;, the set {0; | ] € 3} C N has the same
Cardinalitgf10 as J and a maximal elerﬁent oy

Now f(u) = 7t(f(x)) = 0. Writing u; =: v; + uii_l for2 <i<mn,
this becomes Kl*u?* + f(uq,v2,...,0,) = 0, with deg,, (f) < 0y
Denoting Ry := k[vy,...,v,] C R, it follows that u; is integral over
Ry and (by IV.E9(b)) that R = Rj[uq] is integral over R;. Moreover,
FF is algebraic over F; := F{R;} (why?).

At this point we repeat the argument from the beginning with
Ry and 0y,..., v, replacing R and uy,...,u,. This obviously must
terminate at some Ry = k[wy.1, ..., wy,], with the {w;} algebraically
independent. Applying IV.F.9(c) to the tower of ring extensions, we
get that R/ R, is integral; and by I.N.6 (and the tower law), the {w;}
are a transcendence basis for [F. So r = n — £ and we are done. O

Before proving that the closure of a proper ideal (in the sense of
IV.G.6(b)) is its radical, we first need to show that it remains proper.
Equivalently, before we show that V (I) is a variety with ring of func-
tions k[x1,...,x,]/ VI, we need to show that it contains a point:

IV.G.18. WEAK NULLSTELLENSATZ. Any proper ideal
I C k[xq,...,xy] has nonempty V(I) C K".

PROOF. Let P be a prime of k[xq,...,x,] containing I, so that
V(P) C V(I) by IV.G.7(iii). It will suffice to show that V(P) # @.

Osuppose 0; = oy. Then going mod c gives ¢ | j; —j; hence j; = j; and

Y, ¢ = Y, ¢ %)l Going mod c again gives j, = j5, and so on until ] = ;.
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Write 7t: k[x1,...,%4] = k[x1,...,%4]/P =: R and u; := 7(x;).
Since PNk = {0}, we may identify k with its image. Noether nor-
malization produces ti, .. .,t, € R, algebraically independent over k,
such that R is integral over the polynomial ring S := k[t1, ..., t/].

The kernel of the evaluation map S — k sending t; — 0 is the
ideal m := (t1,...,t,) consisting of polynomials with zero constant
term. So S/m = k and m is maximal. By the Lying-over theorem
IV.E16, there is a prime n C R withn NS = m; by IVE21, n is maxi-
mal, and R/n =: k a field. Using the diagram

k~S/(nNS)—=R/n=k

=

S———R

we see at once that k/k is an algebraic extension: lift an element of k
to R, write down its monic equation over S, and apply the upward
arrows. So there exists an embedding o: k < k C K.

Writing ¢ for the composition

k[x1,..., x5 E»R—T»TCCQK,

we note that it kills P and is the identity on k. So for each f €
P, we have f(¢(x1),...,¢(xn)) = ¢(f(x1,...,x4)) = 0, whence
(p(x1),...,¢(xn)) € V(P). O

IV.G.19. REMARK. Geometrically, one should think of R as the
coordinate ring of the irreducible variety X C K" defined by P. Ho-
momorphisms from k[xy, ..., x,] to K are evaluation maps at points
of K", i.e. pullback maps along the inclusion of a point in K”. To say
that a homomorphism factors through R = k[xy,...,x,]/P is to say
this point is in X.

The mechanism by which this proof produced a homomorphism
from R to K was, in geometric terms, to present X as a finite branched
cover B: X—K’, and exhibit a point of 371(0). The map from ~1(0)
to 0 is “dual” to k < k, and the choice of embedding k < K over k
was the choice of a point in $71(0).
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Finally, turning to the Nullstellensatz itself:

PROOF OF IV.G.9. We may assume I C k[x] := k[x1,...,x,] is a
proper ideal, since otherwise we are done by IV.G.7(i-ii). Moreover,
it's easy to see that Rad(I) C J(V(I)): if f™ € I, then since I C
J(V(I)) (by IV.G.7(v)) and J(V(I)) is radical (by IV.G.4), we have
£ e Jv)).

Suppose, conversely, that f € J(V(I))\{0}. Consider the ideals
I'=k[x,y]land ] := (yf — 1) + I C k[x, y] in the polynomial ring in
(n + 1) variables. Given (a,b) € V(J) C K"*!, we have:
eacV(Il),since] DI = V(J) c V(I) = V(I) x K; and
e (a,b) € V(yf —1),since | > (yf — 1).

This gives0 = bf(a) —1 =b-0—1 = —1, a contradiction. So V(]) =
@. But then, by the weak Nullstellensatz, | cannot be a proper ideal!
Thatis, ] = k[x, y]; so 1 € ], whence

(IV.G.20) 1= (yf—1)go+ T, gif;

for some f; € I and g; € k[x,y].
Now define a homomorphism 6: k[x, y] — k(x) (over k) by send-

ing x; — x; and y — ﬁ Applying this to (IV.G.20) yields

1= (3f = Dgo(x, $) + i &ilx, $)fi(x) = Tiog gilx ) fil).
Taking m := max({deg,(gi) f_,), so that fm(g)gi(z,%) € klx], we
get
="l = M (0)gix 1) filx) € 1L
Hence f € Rad(I) and the proof is complete. O



