## I.I. Simple extensions

In §I.H we showed that any extension $L / K$ of finite fields is simple; that is, there exists $\alpha \in L$ for which $L=K(\alpha)$. (Recall from I.A. 12 that $\alpha$ is then called a primitive element for the extension.) More generally, we should wonder for which extensions just one generator $\alpha$ will do. For one thing, automorphisms would then be determined by where $\alpha$ goes.
I.I.1. LEMMA. Let $L / K$ be an algebraic extension. Then $L / K$ is simple $\Longleftrightarrow L / K$ contains only finitely many intermediate fields.

Proof. $(\Longrightarrow)$ : Assume $K(\alpha)=L$; algebraicity of $\alpha$ yields $m_{\alpha} \in$ $K[x]$, which we factor into irreducibles $\left(m_{\alpha}=\right) g_{1} \cdots g_{k}$ in $L[x]$. Given an intermediate field $M$, we can consider the minimal polynomial $\mu_{\alpha} \in M[x]$. Since this divides $m_{\alpha}$, we have $\mu_{\alpha}=g_{i_{1}} \cdots g_{i_{\ell}}=a_{r}+$ $\cdots+a_{1} x^{r-1}+x^{r}$. Since $\mu_{\alpha}$ is also the minimal polynomial over $M_{0}:=$ $K\left(a_{1}, \ldots, a_{r}\right)$, we have $M_{0}(\alpha)=L=M(\alpha) \Longrightarrow\left[L: M_{0}\right]=\operatorname{deg}\left(\mu_{\alpha}\right)=$ $[L: M] \Longrightarrow M=M_{0}$. So $M$ is determined by the subset $\left\{i_{1}, \ldots, i_{\ell}\right\} \subset$ $\{1, \ldots, k\}$ and there are only finitely many choices.
$(\Longleftarrow)$ : Clearly $L$ is finitely generated over $K$ (otherwise, adjoining an infinite sequence of generators contradicts the hypothesis). Each generator has finite degree over $K$ since the extension is algebraic, and so $[L: K]<\infty$. So we are done if $|K|<\infty$ by §I.H.

If $|K|=\infty$, suppose $r:=\inf \{|\mathcal{S}| \mid K(\mathcal{S})=L\}>1$ and write $L=K\left(\alpha_{1}, \ldots, \alpha_{r}\right)$. As $\kappa$ ranges over $K$, the fields $K\left(\alpha_{1}+\kappa \alpha_{2}\right)$ cannot all be distinct (without contradicting the hypothesis), and there exist distinct $\kappa, \kappa^{\prime} \in K$ for which $K\left(\alpha_{1}+\kappa \alpha_{2}\right)=K\left(\alpha_{1}+\kappa^{\prime} \alpha_{2}\right)$. So $K\left(\alpha_{1}+\right.$ $\kappa \alpha_{2}$ ) contains $\left(\alpha_{1}+\kappa \alpha_{2}\right)-\left(\alpha_{1}+\kappa^{\prime} \alpha_{2}\right)=\left(\kappa-\kappa^{\prime}\right) \alpha_{2}$, hence $\alpha_{2}$, hence $\alpha_{1}$. This means that $K\left(\alpha_{1}+\kappa \alpha_{2}\right)=K\left(\alpha_{1}, \alpha_{2}\right)$, and we can generate $L$ with $r-1$ elements, contradicting minimality of $r$.
I.I.2. Theorem of the Primitive Element. Any finite and separable extension is simple.

Proof. Since $L / K$ is finite, it is certainly finitely generated (and algebraic), and we may write $L=K\left(\alpha_{1}, \ldots, \alpha_{r}\right)$. The polynomial
$g:=\prod_{i} m_{\alpha_{i}}$ is separable since each $\alpha_{i}$ is. If $N / L$ is a SFE for $g$, then so is $N / K$, which is thus Galois, making $K=\operatorname{Inv}(\operatorname{Aut}(N / K))$. Since $\operatorname{Aut}(N / K)$ is finite, it has finitely many subgroups, and so by FTGT $N / K$ has finitely many intermediate fields. So the same goes for $L / K$. Apply the Lemma.

This leads to an improvement of I.F.22.
I.I.3. Corollary. Any Galois extension is the splitting field extension for a single irreducible polynomial.

Proof. Let $L / K$ be Galois. The Theorem yields $\alpha \in L$ such that $L=K(\alpha)$; and $m_{\alpha} \in K[x]$ splits over $L$ since $L / K$ is normal. No proper subfield contains the root $\alpha$, and so $L / K$ is a SFE for $m_{\alpha}$.

Say $L / K$ is Galois, and $K$ is an infinite field. Then there is a simple explanation of the Theorem: since the intermediate fields are (proper) $K$-vector-subspaces of $L$, and there are only finitely many, their union cannot be all of $L$. Thus any element of $L$ not in their union is a primitive element. So to find one, we just need to use the Galois correspondence to find all intermediate subfields.
I.I.4. Example. For $L=Q(\sqrt{2}, \sqrt{3})$, which is Galois/Q, we have $\operatorname{Aut}(L / \mathbf{Q})=\left\{1, \sigma_{2}, \sigma_{3}, \sigma_{2} \sigma_{3}\right\}$ (where $\sigma_{j}: \sqrt{j} \mapsto-\sqrt{j}$ ). Applying Inv to $\left\langle\sigma_{2}\right\rangle,\left\langle\sigma_{3}\right\rangle$, and $\left\langle\sigma_{2} \sigma_{3}\right\rangle$ gives $Q(\sqrt{3}), \mathbf{Q}(\sqrt{2})$, resp. $\mathbf{Q}(\sqrt{6})$. Since $\sqrt{2}+\sqrt{3}$ is not fixed under $\sigma_{2}, \sigma_{3}$, or $\sigma_{2} \sigma_{3}$, it is not contained in an intermediate field of the extension. So $L=\mathrm{Q}(\sqrt{2}+\sqrt{3})$.

We should check that the hypotheses in the Theorem are really needed. Assume that $L / K$ is algebraic, but infinite (like $\overline{\mathbb{Q}} / \mathrm{Q}$ ); then it is not even finitely generated, let alone simple.

What about the separability hypothesis?
I.I.5. EXAMPLE. Put $J=\mathbb{Z}_{p}(y), K=J(z)$, with $y, z$ indeterminates; and let $L / K$ be a SFE for $\left(x^{p}-y\right)\left(x^{p}-z\right)$. Then $[L: K]=$ $p^{2}$, and elements $\ell \in L$ take the form $\frac{P(\sqrt[p]{y}, \sqrt[p]{z})}{Q(\sqrt[p]{y}, \sqrt[p]{z})}$, where $P, Q$ are polynomials. By the freshman's dream, $\ell^{p}$ is a ratio of polynomials in $y, z$, and thus belongs to $K$. Conclude that $[K(\ell): K]=p$ for any $\ell \in L \backslash K$, so that $L / K$ is not simple.


Notice that there are infinitely many subfields $K(\ell)$, since $|K|=\infty$ and each has dimension $p$ over $K$ yet their union covers a vector space of dimension $p^{2}$. This is only possible because $\operatorname{Aut}(L / K)$ is trivial (has fixed field $L$ ) hence entirely fails to "regulate" subfields.

Given an extension $L / K$ of degree $n$, the Theorem of the Primitive Element says we can always find some $\alpha \in L$ for which the powers $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$ yields a basis of $L$ as a $K$-vector space. What more could we ask for?

Well, suppose $L / K$ is Galois, with $G:=\operatorname{Aut}(L / K)=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$. For any $\alpha \in L$, not necessarily primitive, the minimal polynomial over $K$ factors as $m_{\alpha}(x)=\prod_{i=1}^{m}\left(x-\alpha_{i}\right)$ (with $\alpha_{1}=\alpha$, and distinct $\alpha_{i}^{\prime}$ s), and the orbit $G(\alpha)$ is exactly $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$. (Obviously it can't be larger, since roots are sent to roots. It also can't be smaller: otherwise, the coefficients of a partial product $\prod_{j}\left(x-\alpha_{i_{j}}\right)$ would be invariant under $G$, hence belong to $K$, making $m_{\alpha}$ reducible in $K[x]$.) We also have $[K(\alpha): K]=m$. Considering $m=n$ vs. $m<n$ yields at once the
I.I.6. PROPOSITION. $\alpha$ is a primitive element $\Longleftrightarrow \sigma_{1}(\alpha), \ldots, \sigma_{n}(\alpha)$ are distinct.

So when $\alpha$ is primitive, $m=n$ and we have two $n$-element sets, $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$ and $G(\alpha)=\left\{\sigma_{1}(\alpha), \ldots, \sigma_{n}(\alpha)\right\}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. The first spans $L$ as a $K$-vector space, but usually isn't $G$-invariant,
i.e. "normal". (Can you think of an exception?) The second is Ginvariant, but need not span $L$ : consider $\alpha=\sqrt{2}+\sqrt{3}$ in $L / K=$ $Q(\sqrt{2}, \sqrt{3}) / \mathbf{Q}$. What the Normal Basis Theorem says is that we can actually choose $\alpha$ so that the $\sigma_{i}(\alpha)$ are independent over $K$, giving a basis for L/K.
I.I.7. Examples. Find such an $\alpha$ (and thus a "normal basis") for $L / Q$ in each of the following cases:
(1) $L=Q\left(\zeta_{5}\right)$
(2) $L=Q(\sqrt{2}, \sqrt{3})$

For the proof, we will make use of I.G. 3 as well as the following
I.I.8. Lemma. Let $R$ be an infinite subset of a commutative domain $S$. Then for any $f \in S\left[x_{1}, \ldots, x_{n}\right] \backslash\{0\}$, there exists $\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$ such that $f\left(r_{1}, \ldots, r_{n}\right) \neq 0$.

Proof. If $n=1$, the result is clear: $f$ has finitely many roots in the fraction field $F$ of $S$, hence in $S$. So induce on $n$ : writing $f \in$ $S\left[x_{1}\right]\left[x_{2}, \ldots, x_{n}\right]$, the result for $n-1$ (and $S\left[x_{1}\right]$ replacing $S$ ) yields $r_{2}, \ldots, r_{n} \in R$ for which $f\left(x, r_{2}, \ldots, r_{n}\right) \neq 0$ in $S\left[x_{1}\right]$. Applying the $n=1$ case once more to select $r_{1}$, we are done.
I.I.9. Normal Basis Theorem. Let $L / K$ be a Galois extension, with $n=[L: K]$ and $\operatorname{Aut}(L / K)=: G=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$. Then there exists $\ell \in L$ such that $\left(\sigma_{1}(\ell), \ldots, \sigma_{n}(\ell)\right)$ is a basis for $L / K$.

Proof. Case I $(|K|=\infty)$ : Define $\sigma_{i} \sigma_{j}=: \sigma_{p(i, j)}$, and form the $n \times$ $n$ matrix $M=\left[x_{p(i, j)}\right]$ with entries in $K[\underline{x}]=K\left[x_{1}, \ldots, x_{n}\right]$, and $f(\underline{x}):=$ $\operatorname{det}(M) \in K[\underline{x}]$. This polynomial is nonzero because (for instance) $x_{1}$ occurs exactly once in each row and each column, making the coefficient of $x_{1}^{n}$ in $f$ either 1 or -1 .

Let $\left(\beta_{1}, \ldots, \beta_{n}\right) \subset L$ be a basis for $L / K$. The $n$ "orbit vectors"

$$
\left(\sigma_{1}\left(\beta_{1}\right), \ldots, \sigma_{n}\left(\beta_{1}\right)\right), \ldots,\left(\sigma_{1}\left(\beta_{n}\right), \ldots, \sigma_{n}\left(\beta_{n}\right)\right)
$$

are independent over $L$ in $L^{n}$ by I.G.3. So the matrix $\left[\sigma_{i}\left(\beta_{j}\right)\right]$ is invertible and we let $\left[c_{i j}\right]$ denote its inverse.

Setting $g(\underline{x}):=f\left(\sum_{j} \sigma_{1}\left(\beta_{j}\right) x_{j}, \ldots, \sum_{j} \sigma_{n}\left(\beta_{j}\right) x_{j}\right)$, we observe that $f(\underline{x})=g\left(\sum_{j} c_{1 j} x_{j}, \ldots, \sum_{j} c_{n j} x_{j}\right)$, whence $g \in L[\underline{x}]$ is also nonzero. By Lemma I.I.8, there exist $k_{1}, \ldots, k_{n} \in K$ such that $g\left(k_{1}, \ldots, k_{n}\right) \neq 0$. Put $\ell:=\sum_{j=1}^{n} k_{j} \beta_{j}$. Then

$$
\begin{aligned}
0 \neq g\left(k_{1}, \ldots, k_{n}\right) & =f\left(\sum_{j} \sigma_{1}\left(\beta_{j}\right) k_{j}, \ldots, \sum_{j} \sigma_{n}\left(\beta_{j}\right) k_{j}\right) \\
& =f\left(\sigma_{1}(\ell), \ldots, \sigma_{n}(\ell)\right) \\
& =\operatorname{det}\left(\left[\sigma_{p(i, j)}(\ell)\right]\right)=\operatorname{det}\left(\left[\sigma_{i}\left(\sigma_{j}(\ell)\right)\right]\right)
\end{aligned}
$$

$\Longrightarrow\left[\sigma_{i}\left(\sigma_{j}(\ell)\right)\right]_{i, j=1, \ldots, n}$ is invertible $\Longrightarrow$ its columns are linearly independent over $L$. Since these columns are the orbit vectors of $\Lambda:=\left\{\sigma_{1}(\ell), \ldots, \sigma_{n}(\ell)\right\}$, I.G. 3 ensures that $\Lambda$ is independent over $K$, hence a basis.

Case II $(|K|<\infty)$ : Recall that a Galois extension $L / K$ of a finite field is cyclic, with $\operatorname{Aut}(L / K)=\langle\eta\rangle \cong \mathbb{Z}_{n}$. Consider $L$ as a $K[x]$ module, with $x$ acting by $\eta$; the structure theorem then lets us write

$$
L \cong K[x] /\left(\delta_{1}(x)\right) \oplus \cdots \oplus K[x] /\left(\delta_{s}(x)\right)
$$

with $\delta_{s}$ the minimal polynomial and $\prod_{i} \delta_{i}$ the characteristic polynomial of $\eta$.

Now as $\eta^{n}=\operatorname{id}_{L}, \eta$ satisfies $x^{n}-1=0$. Moreover, if $\beta_{1}, \ldots, \beta_{n}$ is any basis for $L / K$, then the orbit vectors $\left\{\left(\beta_{i}, \eta\left(\beta_{i}\right), \ldots, \eta^{n-1}\left(\beta_{i}\right)\right)\right\}_{i=1}^{n}$ are independent/L by I.G.3. So the matrix $\left[\eta^{j-1}\left(\beta_{i}\right)\right]$ is invertible, and its columns $\left\{\left(\eta^{j-1}\left(\beta_{1}\right), \ldots, \eta^{j-1}\left(\beta_{n}\right)\right)\right\}_{j=1}^{n}$ hence the automorphisms $1, \eta, \eta^{2}, \ldots, \eta^{n-1}$ are linearly independent/L. ${ }^{29}$ Consequently $\eta$ satisfies no polynomial equation of degree $<n$, and we must have $\delta_{s}(x)=x^{n}-1$, and (since $\left.\operatorname{deg}\left(\prod_{i} \delta_{i}\right)=\operatorname{dim}_{K}(L)=n\right)$ also $s=1$.

Conclude that $L=K[x] /\left(x^{n}-1\right)$ is a cyclic $K[x]$-module. So there exists $u \in L$ such that $u, \eta(u), \eta^{2}(u), \ldots, \eta^{n-1}(u)$ is a (normal) basis of $L / K$.

[^0]
[^0]:    ${ }^{29}$ More efficiently, one could use the Dedekind Independence Theorem I.L. 8 here.

