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I.I. Simple extensions

In §I.H we showed that any extension L/K of finite fields is sim-
ple; that is, there exists α ∈ L for which L = K(α). (Recall from I.A.12
that α is then called a primitive element for the extension.) More gen-
erally, we should wonder for which extensions just one generator α

will do. For one thing, automorphisms would then be determined
by where α goes.

I.I.1. LEMMA. Let L/K be an algebraic extension. Then L/K is simple
⇐⇒ L/K contains only finitely many intermediate fields.

PROOF. ( =⇒ ): Assume K(α) = L; algebraicity of α yields mα ∈
K[x], which we factor into irreducibles (mα =) g1 · · · gk in L[x]. Given
an intermediate field M, we can consider the minimal polynomial
µα ∈ M[x]. Since this divides mα, we have µα = gi1 · · · gi` = ar +

· · ·+ a1xr−1 + xr. Since µα is also the minimal polynomial over M0 :=
K(a1, . . . , ar), we have M0(α) = L = M(α) =⇒ [L:M0] = deg(µα) =

[L:M] =⇒ M = M0. So M is determined by the subset {i1, . . . , i`} ⊂
{1, . . . , k} and there are only finitely many choices.

(⇐= ): Clearly L is finitely generated over K (otherwise, adjoin-
ing an infinite sequence of generators contradicts the hypothesis).
Each generator has finite degree over K since the extension is alge-
braic, and so [L:K] < ∞. So we are done if |K| < ∞ by §I.H.

If |K| = ∞, suppose r := inf{|S|
∣∣K(S) = L} > 1 and write

L = K(α1, . . . , αr). As κ ranges over K, the fields K(α1 + κα2) cannot
all be distinct (without contradicting the hypothesis), and there exist
distinct κ, κ′ ∈ K for which K(α1 + κα2) = K(α1 + κ′α2). So K(α1 +

κα2) contains (α1 + κα2)− (α1 + κ′α2) = (κ − κ′)α2, hence α2, hence
α1. This means that K(α1 + κα2) = K(α1, α2), and we can generate L
with r− 1 elements, contradicting minimality of r. �

I.I.2. THEOREM OF THE PRIMITIVE ELEMENT. Any finite and sepa-
rable extension is simple.

PROOF. Since L/K is finite, it is certainly finitely generated (and
algebraic), and we may write L = K(α1, . . . , αr). The polynomial
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g := ∏i mαi is separable since each αi is. If N/L is a SFE for g, then
so is N/K, which is thus Galois, making K = Inv(Aut(N/K)). Since
Aut(N/K) is finite, it has finitely many subgroups, and so by FTGT
N/K has finitely many intermediate fields. So the same goes for
L/K. Apply the Lemma. �

This leads to an improvement of I.F.22.

I.I.3. COROLLARY. Any Galois extension is the splitting field exten-
sion for a single irreducible polynomial.

PROOF. Let L/K be Galois. The Theorem yields α ∈ L such that
L = K(α); and mα ∈ K[x] splits over L since L/K is normal. No
proper subfield contains the root α, and so L/K is a SFE for mα. �

Say L/K is Galois, and K is an infinite field. Then there is a sim-
ple explanation of the Theorem: since the intermediate fields are
(proper) K-vector-subspaces of L, and there are only finitely many,
their union cannot be all of L. Thus any element of L not in their
union is a primitive element. So to find one, we just need to use the
Galois correspondence to find all intermediate subfields.

I.I.4. EXAMPLE. For L = Q(
√

2,
√

3), which is Galois/Q, we have
Aut(L/Q) = {1, σ2, σ3, σ2σ3} (where σj :

√
j 7→ −

√
j). Applying Inv

to 〈σ2〉, 〈σ3〉, and 〈σ2σ3〉 gives Q(
√

3), Q(
√

2), resp. Q(
√

6). Since√
2 +
√

3 is not fixed under σ2, σ3, or σ2σ3, it is not contained in an
intermediate field of the extension. So L = Q(

√
2 +
√

3).

We should check that the hypotheses in the Theorem are really
needed. Assume that L/K is algebraic, but infinite (like Q̄/Q); then
it is not even finitely generated, let alone simple.

What about the separability hypothesis?
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I.I.5. EXAMPLE. Put J = Zp(y), K = J(z),
with y, z indeterminates; and let L/K be
a SFE for (xp − y)(xp − z). Then [L:K] =
p2, and elements ` ∈ L take the form
P( p√y, p√z)
Q( p√y, p√z) , where P, Q are polynomials.

By the freshman’s dream, `p is a ratio of
polynomials in y, z, and thus belongs to
K. Conclude that [K(`):K] = p for any
` ∈ L \ K, so that L/K is not simple.
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Notice that there are infinitely many subfields K(`), since |K| = ∞
and each has dimension p over K yet their union covers a vector
space of dimension p2. This is only possible because Aut(L/K) is
trivial (has fixed field L) hence entirely fails to “regulate” subfields.

Given an extension L/K of degree n, the Theorem of the Primitive
Element says we can always find some α ∈ L for which the powers
{1, α, α2, . . . , αn−1} yields a basis of L as a K-vector space. What more
could we ask for?

Well, suppose L/K is Galois, with G := Aut(L/K) = {σ1, . . . , σn}.
For any α ∈ L, not necessarily primitive, the minimal polynomial
over K factors as mα(x) = ∏m

i=1(x − αi) (with α1 = α, and distinct
αi’s), and the orbit G(α) is exactly {α1, . . . , αm}. (Obviously it can’t
be larger, since roots are sent to roots. It also can’t be smaller: oth-
erwise, the coefficients of a partial product ∏j(x− αij) would be in-
variant under G, hence belong to K, making mα reducible in K[x].)
We also have [K(α):K] = m. Considering m = n vs. m < n yields at
once the

I.I.6. PROPOSITION. α is a primitive element ⇐⇒ σ1(α), . . . , σn(α)

are distinct.

So when α is primitive, m = n and we have two n-element sets,
{1, α, α2, . . . , αn−1} and G(α) = {σ1(α), . . . , σn(α)} = {α1, . . . , αn}.
The first spans L as a K-vector space, but usually isn’t G-invariant,
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i.e. “normal”. (Can you think of an exception?) The second is G-
invariant, but need not span L: consider α =

√
2 +
√

3 in L/K =

Q(
√

2,
√

3)/Q. What the Normal Basis Theorem says is that we can
actually choose α so that the σi(α) are independent over K, giving a basis
for L/K.

I.I.7. EXAMPLES. Find such an α (and thus a “normal basis”) for
L/Q in each of the following cases:
(1) L = Q(ζ5)

(2) L = Q(
√

2,
√

3)

For the proof, we will make use of I.G.3 as well as the following

I.I.8. LEMMA. Let R be an infinite subset of a commutative domain S.
Then for any f ∈ S[x1, . . . , xn] \ {0}, there exists (r1, . . . , rn) ∈ Rn such
that f (r1, . . . , rn) 6= 0.

PROOF. If n = 1, the result is clear: f has finitely many roots in
the fraction field F of S, hence in S. So induce on n: writing f ∈
S[x1][x2, . . . , xn], the result for n − 1 (and S[x1] replacing S) yields
r2, . . . , rn ∈ R for which f (x, r2, . . . , rn) 6= 0 in S[x1]. Applying the
n = 1 case once more to select r1, we are done. �

I.I.9. NORMAL BASIS THEOREM. Let L/K be a Galois extension,
with n = [L:K] and Aut(L/K) =: G = {σ1, . . . , σn}. Then there ex-
ists ` ∈ L such that (σ1(`), . . . , σn(`)) is a basis for L/K.

PROOF. Case I (|K| = ∞): Define σiσj =: σp(i,j), and form the n×
n matrix M = [xp(i,j)] with entries in K[x] = K[x1, . . . , xn], and f (x) :=
det(M) ∈ K[x]. This polynomial is nonzero because (for instance) x1

occurs exactly once in each row and each column, making the coef-
ficient of xn

1 in f either 1 or −1.
Let (β1, . . . , βn) ⊂ L be a basis for L/K. The n “orbit vectors”

(σ1(β1), . . . , σn(β1)) , . . . , (σ1(βn), . . . , σn(βn))

are independent over L in Ln by I.G.3. So the matrix [σi(β j)] is in-
vertible and we let [cij] denote its inverse.
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Setting g(x) := f (∑j σ1(β j)xj, . . . , ∑j σn(β j)xj), we observe that
f (x) = g(∑j c1jxj, . . . , ∑j cnjxj), whence g ∈ L[x] is also nonzero. By
Lemma I.I.8, there exist k1, . . . , kn ∈ K such that g(k1, . . . , kn) 6= 0.
Put ` := ∑n

j=1 k jβ j. Then

0 6= g(k1, . . . , kn) = f (∑j σ1(β j)k j, . . . , ∑j σn(β j)k j)

= f (σ1(`), . . . , σn(`))

= det([σp(i,j)(`)]) = det([σi(σj(`))])

=⇒ [σi(σj(`))]i,j=1,...,n is invertible =⇒ its columns are linearly
independent over L. Since these columns are the orbit vectors of
Λ := {σ1(`), . . . , σn(`)}, I.G.3 ensures that Λ is independent over K,
hence a basis.

Case II (|K| < ∞): Recall that a Galois extension L/K of a finite
field is cyclic, with Aut(L/K) = 〈η〉 ∼= Zn. Consider L as a K[x]-
module, with x acting by η; the structure theorem then lets us write

L ∼= K[x]/(δ1(x)) ⊕ · · · ⊕ K[x]/(δs(x)) ,

with δs the minimal polynomial and ∏i δi the characteristic polyno-
mial of η.

Now as ηn = idL, η satisfies xn − 1 = 0. Moreover, if β1, . . . , βn is
any basis for L/K, then the orbit vectors {(βi, η(βi), . . . , ηn−1(βi))}n

i=1
are independent/L by I.G.3. So the matrix [η j−1(βi)] is invertible,
and its columns {(η j−1(β1), . . . , η j−1(βn))}n

j=1 hence the automor-

phisms 1, η, η2, . . . , ηn−1 are linearly independent/L.29 Consequently
η satisfies no polynomial equation of degree < n, and we must have
δs(x) = xn − 1, and (since deg(∏i δi) = dimK(L) = n) also s = 1.

Conclude that L = K[x]/(xn − 1) is a cyclic K[x]-module. So
there exists u ∈ L such that u, η(u), η2(u), . . . , ηn−1(u) is a (normal)
basis of L/K. �

29More efficiently, one could use the Dedekind Independence Theorem I.L.8 here.


