70 I. GALOIS THEORY
LI. Simple extensions

In §I.H we showed that any extension L/K of finite fields is sim-
ple; that is, there exists « € L for which L = K(«). (Recall from I.A.12
that « is then called a primitive element for the extension.) More gen-
erally, we should wonder for which extensions just one generator a
will do. For one thing, automorphisms would then be determined
by where a goes.

LL1. LEMMA. Let L/K be an algebraic extension. Then L/K is simple
<= L/K contains only finitely many intermediate fields.

PROOF. (= ): Assume K(a) = L; algebraicity of « yields m, €
K[x], which we factor into irreducibles (1, =) g1 - - - g in L[x]. Given
an intermediate field M, we can consider the minimal polynomial
Ha € Mlx]. Since this divides m,, we have yy = g; ---gi, = ar +
-+ +a1x’ "1 + 1. Since p, is also the minimal polynomial over M :=
K(ay,...,ar),wehave My(a) = L = M(a) = [L:My] = deg(pa) =
[L:M] = M = Mjy. So M is determined by the subset {7y, ...,i,} C
{1,...,k} and there are only finitely many choices.

( <= ): Clearly L is finitely generated over K (otherwise, adjoin-
ing an infinite sequence of generators contradicts the hypothesis).
Each generator has finite degree over K since the extension is alge-
braic, and so [L:K] < co. So we are done if |K| < co by §LH.

If |[K| = oo, suppose r := inf{|S||K(S) = L} > 1 and write
L = K(ay,...,ar). As k ranges over K, the fields K(a; + xay) cannot
all be distinct (without contradicting the hypothesis), and there exist
distinct x, k" € K for which K(ay + xap) = K(ag + «’ap). So K(aq +
Kkay) contains (aq + xap) — (aq + K'ay) = (x — x’)ap, hence ay, hence
1. This means that K(aq + xap) = K(a1,a2), and we can generate L
with r — 1 elements, contradicting minimality of r. O

[.1.2. THEOREM OF THE PRIMITIVE ELEMENT. Any finite and sepa-
rable extension is simple.

PROOF. Since L/K is finite, it is certainly finitely generated (and
algebraic), and we may write L = K(ay,...,«,). The polynomial
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g = [; my, is separable since each «; is. If N/L is a SFE for g, then
so is N/K, which is thus Galois, making K = Inv(Aut(N/K)). Since
Aut(N/K) is finite, it has finitely many subgroups, and so by FTGT
N/K has finitely many intermediate fields. So the same goes for
L/K. Apply the Lemma. O

This leads to an improvement of I.F.22.

I.1.3. COROLLARY. Any Galois extension is the splitting field exten-
sion for a single irreducible polynomial.

PROOF. Let L/K be Galois. The Theorem yields « € L such that
L = K(«); and m, € K][x] splits over L since L/K is normal. No
proper subfield contains the root #, and so L/K is a SFE for m,. [

Say L/K is Galois, and K is an infinite field. Then there is a sim-
ple explanation of the Theorem: since the intermediate fields are
(proper) K-vector-subspaces of L, and there are only finitely many,
their union cannot be all of L. Thus any element of L not in their
union is a primitive element. So to find one, we just need to use the

Galois correspondence to find all intermediate subfields.

I.1.4. EXAMPLE. For L = Q(\/Z v/3), which is Galois/Q, we have
Aut(L/Q) = {1,02,03,0203} (where 0;: Vi —/J)- Applying Inv
to (02), (03), and (0203) gives Q(v/3), Q(1/2), resp. Q(1/6). Since
V2 + /3 is not fixed under o3, 03, or 0,03, it is not contained in an
intermediate field of the extension. So L = Q(v/2 + v/3).

We should check that the hypotheses in the Theorem are really
needed. Assume that L/K is algebraic, but infinite (like Q/Q); then
it is not even finitely generated, let alone simple.

What about the separability hypothesis?
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LL5. EXAMPLE. Put ] = Z,(y), K = J(z),
with y, z indeterminates; and let L/K be
a SFE for (x? —y)(xP — z). Then [L:K] = / \
p?, and elements ¢ € L take the form

%, where P,Q are polynomials. / \ /
By the freshman’s dream, ¢7 is a ratio of

polynomials in v, z, and thus belongs to

K. Conclude that [K(¢):K] = p for any \ /

¢ € L\ K, so that L/K is not simple.

Notice that there are infinitely many subfields K (E), since |K| = o
and each has dimension p over K yet their union covers a vector

space of dimension p2. This is only possible because Aut(L/K) is
trivial (has fixed field L) hence entirely fails to “regulate” subfields.

Given an extension L/ K of degree n, the Theorem of the Primitive
Element says we can always find some « € L for which the powers
{1,a,a?,...,a" 1} yields a basis of L as a K-vector space. What more
could we ask for?

Well, suppose L/ K is Galois, with G := Aut(L/K) = {01,...,04}.
For any & € L, not necessarily primitive, the minimal polynomial
over K factors as m,(x) = [T ;(x — a;) (with a; = &, and distinct
w;’'s), and the orbit G(«) is exactly {ay,...,a;}. (Obviously it can’t
be larger, since roots are sent to roots. It also can’t be smaller: oth-
erwise, the coefficients of a partial product [T;(x — (xij) would be in-
variant under G, hence belong to K, making m, reducible in K[x].)
We also have [K(«):K] = m. Considering m = n vs. m < n yields at
once the

L.1.6. PROPOSITION. w is a primitive element <= o1(«),...,0n ()
are distinct.

So when « is primitive, m = n and we have two n-element sets,

{1,a,02,...,a" 1} and G(a) = {o1(a),...,0u(a)} = {ag,...,an}.

The first spans L as a K-vector space, but usually isn’t G-invariant,
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i.e. “normal”. (Can you think of an exception?) The second is G-
invariant, but need not span L: consider & = V2++3in L/K =
Q(v2,v/3)/Q. What the Normal Basis Theorem says is that we can
actually choose « so that the o;(«) are independent over K, giving a basis
for L/K.

[.I.7. EXAMPLES. Find such an « (and thus a “normal basis”) for
L/Q in each of the following cases:
1) L =Q(ls)
2 L =Q(v2,V3)

For the proof, we will make use of 1.G.3 as well as the following

L1.8. LEMMA. Let R be an infinite subset of a commutative domain S.
Then for any f € S[x1,...,xu] \ {0}, there exists (r1,...,1n) € R" such
that f(r1,...,1n) # 0.

PROOF. If n = 1, the result is clear: f has finitely many roots in
the fraction field F of S, hence in S. So induce on n: writing f €
S[x1][x2, ..., xn], the result for n — 1 (and S[x1] replacing S) yields
r2,...,tn € R for which f(x,rp,...,r,) # 0in S[x1]. Applying the
n = 1 case once more to select 71, we are done. O

L19. NORMAL BASIS THEOREM. Let L/K be a Galois extension,
with n = [L:K] and Aut(L/K) =: G = {0y,...,0,}. Then there ex-
ists ¢ € L such that (o1({),...,0,({)) is a basis for L/K.

PROOF. Case I (|K| = o0): Define 0joj =: 0,(; ), and form the n x

nmatrix M = [x,(; ;)] with entries in K[x] = K[xy, ..., x4],and f(x) :=
det(M) € K]x]. This polynomial is nonzero because (for instance) x;
occurs exactly once in each row and each column, making the coef-
ficient of x7 in f either 1 or —1.

Let (B1,...,Bn) C L be abasis for L/K. The n “orbit vectors”

(1(B1), -+ 0u(B1)), --s (@1(Bn), -+, 0u(Bn))

are independent over L in L" by 1.G.3. So the matrix [0;(B;)] is in-
vertible and we let [c;;] denote its inverse.
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Setting g(x) := f(¥;01(Bj)xj,-..,X;on(Bj)xj), we observe that
f(x) = g(¥Xc1jxj, ..., Ljcnjxj), whence g € L[x] is also nonzero. By
Lemma L18, there exist ky,...,k, € K such that ¢(ky,...,k,) # O.
Put € := 3 kjB;j. Then

0% g(ki, .. kn) = fF(Zj01(Bkj, - -, Ljon(B))kj)
= f(o1({),...,04(£))
= det([o;(£)]) = det([o(c;(€))])
= [0i(0j(£))]ij=1,..n is invertible == its columns are linearly
independent over L. Since these columns are the orbit vectors of

A= {c(¥),...,04(£)}, 1L.G.3 ensures that A is independent over K,
hence a basis.

Case II (|K| < o0): Recall that a Galois extension L/K of a finite
field is cyclic, with Aut(L/K) = () = Z,. Consider L as a K[x]-
module, with x acting by 7; the structure theorem then lets us write

L= K[x]/(61(x)) @ -+ @ K[x]/(6s(x)),

with Js the minimal polynomial and []; é; the characteristic polyno-
mial of 7.

Now as n7"* = idy, 7 satisfies x* — 1 = 0. Moreover, if B1,..., By is
any basis for L/K, then the orbit vectors {(8;,17(8:), ..., 71" 1(Bi)) },
are independent/L by 1.G.3. So the matrix [/~1(B;)] is invertible,
and its columns {(7/~1(B1),...,7 71 (Bx)) j—1 hence the automor-
phisms 1,7, 172, e, 17”_1 are linearly independent/ L% Consequently
1 satisfies no polynomial equation of degree < 1, and we must have
Js(x) = x™ — 1, and (since deg([T; é;) = dimg(L) = n) alsos = 1.

Conclude that L = K[x]/(x" — 1) is a cyclic K[x]-module. So
there exists u € L such that u,n(u),n%(u),..., 7" (u) is a (normal)
basis of L/K. O

More efficiently, one could use the Dedekind Independence Theorem I.L.8 here.



