PROBLEM SET 1

Below, $d \neq 0, 1$ is always squarefree.

- (1) (a) Show that for $p \neq 2$, $\left(\frac{a}{p}\right) = 1 \iff a^{\frac{p-1}{2}} \equiv 1$. [Hint: the multiplicative group of a finite field is . . .] (b) Show $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$. (c) Let p be a prime of the form 4m + 1, $m \in \mathbb{Z}$. Show $\left(\frac{-1}{p}\right) = 1$, hence that p is not prime in $\mathbb{Z}[i]$, hence that $p = a^2 + b^2$ ($a, b \in \mathbb{Z}$).
- (2) Recall that we know $R = \mathbb{Z}[i]$ is a UFD, so that the primes and irreducibles in R are the same. Find all of them. [Hint: any element r divides its norm $\mathcal{N}(r) = r\bar{r}$. Factor this into integer primes and then factor those in $\mathbb{Z}[i]$.]
- (3) [Jacobson p. 147 #8] Let *p* be a prime of the form 4n + 1 and let *q* be a prime such that the Legendre symbol $\left(\frac{q}{p}\right) = -1$ (cf. [Algebra I. III.J.16]). Show that $\mathbb{Z}[\sqrt{pq}]$ is not a UFD. (In particular, this applies to $\mathbb{Z}[\sqrt{10}]$.) [Hint: by [Algebra I, Thm. III.I.12], it suffices to show that the "Primeness Condition" fails for some element of $\mathbb{Z}[\sqrt{pq}]$. One way to do this uses Exercise (1) parts (b) and (c).]
- (4) Let $K = \mathbb{Q}[\sqrt{-29}]$. From [Algebra I, III.L.26] we know that $[\mathscr{P}_5] \in Cl(K)$ has order 3, and we also note that $(2) = (2, 1 + \sqrt{-29})^2 =: \mathscr{P}_2^2$. Show that \mathcal{O}_K has ideals of norm 3 and 11 of order 6 in Cl(K). [Hint: start by looking for principal ideals of norm 30 and 33.]
- (5) We explained how odd primes *p* decompose in number rings. What about the even prime? Let $K = \mathbb{Q}[\sqrt{d}]$, and show that (in \mathcal{O}_K)

$$d \equiv 2 \implies (2) = (2, \sqrt{d})^2$$

$$d \equiv 3 \implies (2) = (2, 1 + \sqrt{d})^2$$

$$d \equiv 1 \implies (2) = (2, \frac{1 + \sqrt{d}}{2})(2, \frac{1 - \sqrt{d}}{2})$$

$$d \equiv 5 \implies (2) \text{ prime}$$

- (6) Let $K = \mathbb{Q}[\sqrt{-26}]$. Find all non-principal ideals of norm 30 in \mathcal{O}_K . [Hint: here are some of your tools: [Algebra I, Prop. III.L.25], Pell's equation (i.e. using solutions of $x^2 + 26y^2 = m$ to test whether there exists a principal ideal of norm m), uniqueness of ideal factorization, and Caesar.]
- (7) Show that $X^2 = Y^3 14$ has no solution with $X, Y \in \mathbb{Z}$. You may assume that $h_{\mathbb{Q}(\sqrt{-14})} = 4$. [Hint: if (X, Y) is a solution, put $\alpha := X + \sqrt{-14}$ (not $X + Y\sqrt{-14}$!!). Turn the equation into an equation of ideals, decompose both sides into prime factors, and use uniqueness of ideal factorization to deduce that α is a cube in $\mathbb{Z}[\sqrt{-14}]$.]
- (8) Let $K = \mathbb{Q}[\sqrt{d}]$, $d \equiv 2 \text{ or } 3$, and $I \subset \mathcal{O}_K$ an ideal. Show that $\mathfrak{N}(I) = |\mathcal{O}_K/I|$, where $\mathfrak{N}(I)$ is defined via Hurwitz. [Hint: first compute $|\mathcal{O}_K/I|$ as a determinant.]