Problem Set 11

R is a commutative ring (with 1 , as always in this course) throughout.
(1) Prove that an Artinian commutative domain R is a field. [Hint: to find an inverse for $a \neq 0$, consider $(a) \supset\left(a^{2}\right) \supset\left(a^{3}\right) \supset \cdots$.]
(2) If \mathcal{S} is a multiplicative subset of a commutative ring R, show that (a) $S^{-1}(\operatorname{Rad} I)=$ $\operatorname{Rad}\left(\mathcal{S}^{-1} I\right)$ and (b) $\mathcal{S}^{-1} R$ is Noetherian if R is Noetherian.
(3) Show that a commutative ring is local if and only if for all $r, s \in R, r+s=1$ implies r or s is a unit.
(4) Let p be a prime in \mathbb{Z}; then (p) is a prime ideal. What can be said about the relationship between \mathbb{Z}_{p} and the localization $\mathbb{Z}_{(p)}$? Describe $\mathbb{Z}_{(p)}$ as a subset of the rational numbers.
(5) Find the nilradical of $\mathbb{Z}_{n}(n \in \mathbb{N})$.
(6) Prove the five-lemma (Remark IV.B.7(iii)).
(7) If every maximal ideal in R is of the form (c), for some $c \in R$ with $c^{2}=c$, then R is Noetherian. [Hint: show that every primary ideal is maximal; use Cohen's theorem.]
(8) Show that in $\mathbb{Z}[x, y]$ the ideals $\left(x^{i}, y^{j}\right)$ are all primary ideals with radical (x, y).
(9) Find a reduced primary decomposition for the ideal $I=\left(x^{2}, x y, 2\right)$ in $\mathbb{Z}[x, y]$ and determine the (prime) radicals of the primary ideals appearing in this decomposition.

