PROBLEM SET 12

R is a commutative ring (with 1) throughout.

- (1) If *N* is a *P*-primary submodule of an *R*-module *M* and $rx \in N$ ($r \in R, x \in M$), show that either $r \in P$ or $x \in N$.
- (2) If *M* is an *R*-module and $x \in M$, the annihilator of *x*, denoted ann(x), is $\{r \in R \mid rx = 0\}$. (a) Show that ann(x) is an ideal. (b) Assuming $M \neq 0$, show that a maximal element of the set $\{ann(x) \mid x \in M \setminus \{0\}\}$ of ideals is prime.
- (3) Let R be Noetherian and $M \neq \{0\}$ an *R*-module. If *P* is prime, of the form ann(x) for some $x \in M$, then *P* is called an **associated prime** of *M*. (a) Using (2)(b), show that an associated prime exists. (b) If M satisfies the ACC, prove that there exist primes P_1, \ldots, P_{r-1} and a sequence of submodules $M = M_1 \supset M_2 \supset \cdots \supset M_r = \{0\}$ such that $M_i/M_{i+1} = R/P_i$ for each i < r.
- (4) Prove that $\mathbb{C}[z]$ is integrally closed (in its fraction field $\mathbb{C}(z)$), i.e. *normal*. [Hint: suppose you had a $\frac{P}{Q} \in \mathbb{C}(z)$, *P* and *Q* relatively prime in $\mathbb{C}[z]$, integral over $\mathbb{C}[z]$.]
- (5) In lecture on Monday I'll describe *normalizing* the curve $y^2 = x^3 x^2$ with a nodal singularity at (0,0) by introducing the function $z = \frac{y}{x}$. If $R = \frac{\mathbb{C}[x,y]}{(y^2 x^3 + x^2)}$, then let $S = \frac{\mathbb{C}[x,y,z]}{(y^2 x^3 + x^2)}$ with the natural map $\varphi \colon R \to S$. Show

$$(y^2 - x^3 + x^2, z^2 - x + 1, z^3 + z - y)$$
 which the initial indep φ . If γ b, c

(a) that $S \cong \mathbb{C}[z]$ (the coordinate ring of a complex line!).

(b) What geometric map does φ correspond to "pulling back functions" along? Use this to argue that φ is injective (or prove this by some other means).

(c) Show (e.g. using Chinese remainder) that $T = \frac{C[x,y,z]}{(y^2 - x^3 + x^2, z^2 - x + 1)}$ is not a domain, so this can't be inside *R*'s field of fractions.

(d) Use problem (4) to show that *S* is the integral closure of *R* in its fraction field.

[Hint: don't make this problem hard. It's all very simple calculations or trivial arguments.]

(6) Let *R* be a Noetherian local ring with maximal ideal \mathfrak{m} . If the ideal $\mathfrak{m}/\mathfrak{m}^2$ in R/\mathfrak{m}^2 is generated by $\{a_1 + \mathfrak{m}^2, \dots, a_n + \mathfrak{m}^2\}$, show that the ideal \mathfrak{m} is generated in *R* by $\{a_1, \dots, a_n\}$. [Hint: use Nakayama's Lemma (i) \Longrightarrow (iv).]

Remark: In the notes, "associated primes $\{P_i\}$ of a reduced primary decomposition" of a submodule $A \subset B$ (of an *R*-module *B*) were defined in a different way (as the $\sqrt{Q_{A_i}}$ of the primary modules A_i whose intersection is *A*). With some additional work, one can show that these $\{P_i\}$ are precisely the associated primes of the *R*-module *B*/*A* (in the sense of exercise (3) here).