Problem Set 12

R is a commutative ring (with 1) throughout.
(1) If N is a P-primary submodule of an R-module M and $r x \in N(r \in R, x \in M)$, show that either $r \in P$ or $x \in N$.
(2) If M is an R-module and $x \in M$, the annihilator of x, denoted ann (x), is $\{r \in$ $R \mid r x=0\}$. (a) Show that ann (x) is an ideal. (b) Assuming $M \neq 0$, show that a maximal element of the set $\{\operatorname{ann}(x) \mid x \in M \backslash\{0\}\}$ of ideals is prime.
(3) Let R be Noetherian and $M \neq\{0\}$ an R-module. If P is prime, of the form ann (x) for some $x \in M$, then P is called an associated prime of M. (a) Using (2)(b), show that an associated prime exists. (b) If M satisfies the ACC, prove that there exist primes P_{1}, \ldots, P_{r-1} and a sequence of submodules $M=M_{1} \supset M_{2} \supset \cdots \supset M_{r}=$ $\{0\}$ such that $M_{i} / M_{i+1}=R / P_{i}$ for each $i<r$.
(4) Prove that $\mathbb{C}[z]$ is integrally closed (in its fraction field $\mathbb{C}(z)$), i.e. normal. [Hint: suppose you had a $\frac{P}{Q} \in \mathbb{C}(z), P$ and Q relatively prime in $\mathbb{C}[z]$, integral over $\mathbb{C}[z]$.]
(5) In lecture on Monday I'll describe normalizing the curve $y^{2}=x^{3}-x^{2}$ with a nodal singularity at $(0,0)$ by introducing the function $z=\frac{y}{x}$. If $R=\frac{\mathrm{C}[x, y]}{\left(y^{2}-x^{3}+x^{2}\right)}$, then let $S=\frac{\mathrm{C}[x, y, z]}{\left(y^{2}-x^{3}+x^{2}, z^{2}-x+1, z^{3}+z-y\right)}$ with the natural map $\varphi: R \rightarrow S$. Show
(a) that $S \cong \mathbb{C}[z]$ (the coordinate ring of a complex line!).
(b) What geometric map does φ correspond to "pulling back functions" along? Use this to argue that φ is injective (or prove this by some other means).
(c) Show (e.g. using Chinese remainder) that $T=\frac{C[x, y, z]}{\left(y^{2}-x^{3}+x^{2}, z^{2}-x+1\right)}$ is not a domain, so this can't be inside R 's field of fractions.
(d) Use problem (4) to show that S is the integral closure of R in its fraction field.
[Hint: don't make this problem hard. It's all very simple calculations or trivial arguments.]
(6) Let R be a Noetherian local ring with maximal ideal \mathfrak{m}. If the ideal $\mathfrak{m} / \mathfrak{m}^{2}$ in R / \mathfrak{m}^{2} is generated by $\left\{a_{1}+\mathfrak{m}^{2}, \ldots, a_{n}+\mathfrak{m}^{2}\right\}$, show that the ideal \mathfrak{m} is generated in R by $\left\{a_{1}, \ldots, a_{n}\right\}$. [Hint: use Nakayama's Lemma (i) \Longrightarrow (iv).]
Remark: In the notes, "associated primes $\left\{P_{i}\right\}$ of a reduced primary decomposition" of a submodule $A \subset B$ (of an R-module B) were defined in a different way (as the $\sqrt{Q_{A_{i}}}$ of the primary modules A_{i} whose intersection is A). With some additional work, one can show that these $\left\{P_{i}\right\}$ are precisely the associated primes of the R-module B / A (in the sense of exercise (3) here).

