Problem Set 2

In addition to these problems, read the introduction to Chapter 4 in Jacobson.
(1) [Jacobson p. 215 \#2] Determine $[\mathrm{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]$.
(2) [Jacobson p. $215 \# 4$] Let $w=\cos (\pi / 6)+\mathbf{i} \sin (\pi / 6)$ (in \mathbb{C}). Note that $w^{12}=1$ but $w^{r} \neq 1$ if $1 \leq r<12$ (so w is a generator of the cyclic group of 12th roots of 1). Show that $[\mathrm{Q}(w): \mathbf{Q}]=4$ and determine the minimal polynomial of w over \mathbb{Q}.
(3) [Jacobson p. 215 \#6] Let $E_{i}, i=1,2$, be a subfield of K / F such that $\left[E_{i}: F\right]<\infty$. Show that if E is the subfield of K generated by E_{1} and E_{2} then $[E: F] \leq\left[E_{1}: F\right]\left[E_{2}: F\right]$.
(4) [Jacobson p. 215 \#8] Let $E=F(u), u$ transcendental, and let $K \neq F$ be a subfield of E / F. Show that u is algebraic over K.
(5) Given that $(\ell, 0)$ is constructible $\left(\ell \in \mathbb{R}_{+}\right)$, show how to construct $(\sqrt{\ell}, 0)$ and $\left(\ell^{2}, 0\right)$. (You must give more detail than Jacobson.)
(6) Construct a regular pentagon "with straightedge and compass".
(7) Suppose that M / L and L / K are extensions, and that $\alpha \in M$ is algebraic over K. Does $[L(\alpha): L]$ always divide $[K(\alpha): K]$?

