PROBLEM SET 2

In addition to these problems, read the introduction to Chapter 4 in Jacobson.

- (1) [Jacobson p. 215 #2] Determine $[Q(\sqrt{2}, \sqrt{3}):Q]$.
- (2) [Jacobson p. 215 #4] Let $w = \cos(\pi/6) + i \sin(\pi/6)$ (in C). Note that $w^{12} = 1$ but $w^r \neq 1$ if $1 \leq r < 12$ (so *w* is a generator of the cyclic group of 12th roots of 1). Show that $[\mathbb{Q}(w):\mathbb{Q}] = 4$ and determine the minimal polynomial of *w* over Q.
- (3) [Jacobson p. 215 #6] Let E_i , i = 1, 2, be a subfield of K/F such that $[E_i:F] < \infty$. Show that if E is the subfield of K generated by E_1 and E_2 then $[E:F] \leq [E_1:F][E_2:F]$.
- (4) [Jacobson p. 215 #8] Let E = F(u), *u* transcendental, and let $K \neq F$ be a subfield of *E*/*F*. Show that *u* is algebraic over *K*.
- (5) Given that $(\ell, 0)$ is constructible $(\ell \in \mathbb{R}_+)$, show how to construct $(\sqrt{\ell}, 0)$ and $(\ell^2, 0)$. (You must give more detail than Jacobson.)
- (6) Construct a regular pentagon "with straightedge and compass".
- (7) Suppose that M/L and L/K are extensions, and that $\alpha \in M$ is algebraic over K. Does $[L(\alpha) : L]$ always divide $[K(\alpha) : K]$?