(1) [Jacobson p. 229 \#2] Construct a splitting field over Q of $x^{5}-2$. Find its degree over Q.
(2) [Jacobson p. 229 \#3] Determine a splitting field over \mathbb{Z}_{p} of $x^{p^{e}}-1, e \in \mathbb{N}$.
(3) Find splitting field extensions for $x^{3}-5$ over $\mathbb{Z}_{7}, \mathbb{Z}_{11}$ and \mathbb{Z}_{13}.
(4) Show that an algebraically closed field must be infinite.
(5) Suppose that $K(\alpha) / K$ is a simple extension and that α is transcendental over K. Show that $K(\alpha)$ is not algebraically closed.
(6) Let p be a prime number. By factorizing $x^{p-1}-1$ over \mathbb{Z}_{p}, prove Wilson's theorem: i.e., show that $(p-1)!\underset{(p)}{\overline{\bar{p}}}-1$. (I know it's a retread from Algebra I, but this gives a quicker proof and new perspective.)
(7) [Jacobson p. 234 \#2] Let $f(x)$ be irreducible in $F[x]$, where F is of characteristic p. Show that $f(x)$ can be written as $g\left(x^{p^{e}}\right)$, where $g(x)$ is irreducible and separable. Use this to show that every root of $f(x)$ has the same multiplicity p^{e} (in a splitting field). [Hint: use I.E. 6 and I.E. 8 from the Algebra II notes.]

