PROBLEM SET 5

Hand in all.

- (1) Find the Galois group of $f = x^4 2$ over \mathbb{Q} , \mathbb{Z}_3 , and \mathbb{Z}_7 .
- (2) [Jacobson, p. 243 #1] Show that in the subgroup-subfield correspondence in the Fundamental Theorem of Galois theory, intersections of subgroups correspond to compositums of subfields, and intersections of subfields corresponds to the group generated by their "Galois groups".
- (3) Given a finite group *G*, show that there exists a Galois extension L/K such that $Aut(L/K) \cong G$.
- (4) [Jacobson, p. 243 #9] Show that $E = \mathbb{Q}(\sqrt{2}, \sqrt{3}, u)$ where $u^2 = (9 5\sqrt{3})(2 \sqrt{2})$, is normal. Determine Gal(E/\mathbb{Q}).
- (5) Factorize $x^{p^p} x$ over \mathbb{Z}_p .
- (6) Let p < q be primes, $p \nmid q 1$. Show that there is an extension L/\mathbb{Z}_q which is a splitting field extension for each of the polynomials $x^p a$ ($a \in \mathbb{Z}_q^*$).
- (7) Show that the simple transcendental extension K(t)/K has infinitely many intermediate fields.
- (8) [Jacobson, p. 151 #19] Prove that if $\varphi(n)$ is the Euler phi-function, then $\varphi(n) = \sum_{d|n} \mu(\frac{n}{d})d$.