PROBLEM SET 6

The last exercise uses stuff we'll discuss on Wednesday (but is easy).

- (1) Suppose that L/K is finite and separable and M/L is finite simple. Show that M/K is simple.
- (2) [Jacobson, p. 295 #2] Find a primitive element for a splitting field over \mathbb{Q} of $x^5 2$.
- (3) [Jacobson, p. 250 #6] Define G^i by $G^1 = G$, $G^i = [G^{i-1}, G]$ (commutators). The sequence of normal subgroups $G^1 \supset G^2 \supset \cdots$ is called the *lower central series* for G. G is called *nilpotent* if there exists an integer k such that $G^k = 1$. Show that if G is nilpotent, then it is solvable. Give an example to show that the converse does not hold.
- (4) [Jacobson, p. 256 #1] Let p be a prime unequal to the char(K). Show that, if $a \in K$, then $x^p a$ is either irreducible in K[x] or it has a root in K.
- (5) [Jacobson, p. 256 #2] Assume that $x^p a$, $a \in \mathbb{Q}$, is irreducible in $\mathbb{Q}[x]$. Show that the Galois group of $x^p a$ over \mathbb{Q} is isomorphic to the group of transformations of \mathbb{Z}_p of the form $y \mapsto by + c$, where $b, c \in \mathbb{Z}_p$ and $b \neq 0$.
- (6) [Jacobson, p. 260 #2] Let $K = \mathbb{R}$ and let f(x) be a cubic with discriminant Δ . Show that f(x) has multiple roots, three distinct real roots, or one real root and two non-real roots according as $\Delta = 0$, $\Delta > 0$, or $\Delta < 0$.
- (7) [Jacobson, p. 260 #7] Show that the transitive subgroups of \mathfrak{S}_4 are (i) \mathfrak{S}_4 , (ii) \mathfrak{A}_4 , (iii) $V_4 = \{1, (12)(34), (13)(24), (14)(23)\}$, (iv) $C_4 = \langle (1234) \rangle$ and its conjugates, and (v) $D_4 = V_4 \cup \{(12), (34), (1423), (1324)\}$ (which is a Sylow 2-subgroup) and its conjugates.
- (8) [Jacobson, p. 266 #1(a)] Solve the equation $x^3 2x + 4 = 0$ (in an extension of \mathbb{Q}) by Cardano's formulas.

¹ This assumption (made by Jacobson) is in fact unnecessary, though you may use it if you wish.