PROBLEM SET 7

- (1) Suppose that $f = x^n + px + q$. Show that $\lambda_1 = \lambda_2 = \cdots = \lambda_{n-2} = 0$, $\lambda_{n-1} = -(n-1)p$, $\lambda_n = -nq$, $\lambda_{n+1} = \cdots = \lambda_{2n-3} = 0$, and $\lambda_{2n-2} = (n-1)p^2$. Hence show the discriminant Δ of f is $\varepsilon_n n^n q^{n-1} + \varepsilon_{n-1} (n-1)^{n-1} p^n$, where $\varepsilon_n = 1$ if $n \equiv 0, 1$ and $\varepsilon_n = -1$ if $n \equiv 2, 3$. [Hint: use Newton's identities on p. 140 of Jacobson.]
- (2) Using our methods for dealing with quartics (and problem (1)), determine Galois groups (over Q) of
 - (a) $x^4 + 8x 12$,
 - (b) $x^4 + 1$,
 - (c) $x^4 + x^3 + x^2 + x + 1$,
 - (d) $x^4 2$.
- (3) Using what we've learned about cyclotomic polynomials Φ_m , determine Galois groups (over Q) of $x^4 + 1$ and $x^5 + 1$. [Hint: you may use Theorem 4.21 of Jacobson. I'm aware that this repeats one of the polynomials in (2).]
- (4) Suppose that p is prime and doesn't divide m, and let ε be a primitive m^{th} root of 1 over \mathbb{Z}_p . Show that $[\mathbb{Z}_p(\varepsilon):\mathbb{Z}_p] = k$, where k is the order of \bar{p} in \mathbb{Z}_m^* . Show that the cyclotomic polynomial Φ_m is irreducible over \mathbb{Z}_p if and only if \mathbb{Z}_m^* is a cyclic group generated by \bar{p} . When is Φ_4 irreducible over \mathbb{Z}_p ? How about Φ_8 ?
- (5) Determine whether Φ_{18} is irreducible over \mathbb{Z}_{23} , \mathbb{Z}_{43} , and \mathbb{Z}_{73} . (You may want to look at I.L.22 and the comments after it.)
- (6) Show that the primitive n^{th} roots of 1 over \mathbb{Q} form a normal basis for the splitting field of $x^n 1$ over \mathbb{Q} if and only if n has no repeated prime factors.
- (7) [Jacobson, p. 287 #1] Show that sin(u) is transcendental for all algebraic $u \neq 0$.
- (8) Suppose L/K is an extension, and that L is finitely generated over K. Show that the field K_a of elements of L which are algebraic over K is f.g. over K.