Problem Set 8

(1) [Jacobson p. 100 \#7] Let m and n be non-zero integers and let R be the subset of $M_{2}(\mathbb{C})$ consisting of the matrices of the form

$$
\left(\begin{array}{cc}
a+b \sqrt{m} & c+d \sqrt{m} \\
n(c-d \sqrt{m}) & a-b \sqrt{m}
\end{array}\right)
$$

where $a, b, c, d \in \mathbb{Q}$. Show that R is a subring of $M_{2}(\mathbb{C})$ and that R is a division ring if and only if the rational numbers x, y, z, t satisfying the equation $x^{2}-m y^{2}-$ $n z^{2}+m n t^{2}=0$ are $x=y=z=t=0$. Give a choice of m, n for which r is a division ring and a choice of m, n for which R is not a division ring. [N.B. These rings are called "rational quaternion algebras".]
(2) [Jacobson, p. 300 \#1] Show that if E is a finite field and F is a subfield, so that E / F is a cyclic extension, then the norm homomorphism $N_{E / F}$ of E^{*} is surjective on F^{*}.
(3) In this problem you will prove a special case of the Kronecker-Weber theorem, that every abelian extension of \mathbb{Q} is a subfield of a cyclotomic field. The first 3 parts come from [Jacobson, pp. 276-277].
(a) Suppose $f(x) \in K[x]$ (of degree n) has n distinct roots r_{i} in a splitting field. Show that the discriminant Δ is equal to $(-1)^{n(n-1) / 2} \prod_{i=1}^{n} f^{\prime}\left(r_{i}\right)$.
(b) Let p be an odd prime. By differentiating $x^{p}-1=(x-1) \Phi_{p}(x)$, show that the discriminant of Φ_{p} is $(-1)^{p(p-1) / 2} p^{p-2}$.
(c) Show that $\mathbb{Q}\left(\zeta_{p}\right)$ has a unique subfield E with $[E: Q]=2$, which is real or not depending on whether p has the form $4 n+1$ or $4 n+3$.
(d) Prove that for each $m \in \mathbb{Z} \backslash\{0\}, \mathbb{Q}(\sqrt{m})$ is a subfield of $\mathbb{Q}\left(\zeta_{4|m|}\right)$. [Hint: don't forget that $\mathbb{Q}\left(\zeta_{M}\right) \subset \mathbb{Q}\left(\zeta_{N}\right)$ if $M \mid N$.]

