PROBLEM SET 9

- (1) What are the semisimple \mathbb{Z} -modules?
- (2) Show that a (left) *R*-module *M* has a composition series iff it is Noetherian and Artinian, cf. the remarks just before III.A.4.
- (3) Show that the center of a semisimple ring *R* is a finite direct product of fields. Show that, in the case $R \cong M_n(D)$ (*D* a division ring), it is a field.
- (4) Let *M* be a finitely generated (left) *R*-module and $E = \text{End}_R(M)$. Show that if *R* is semisimple, then so is *E*.
- (5) Let *R* be an n^2 -dimensional algebra over a field *k*. Show that $R \cong M_n(k)$ (as *k*-algebras) if and only if *R* is simple¹ and has an element *r* whose minimal polynomial over *k* has the form $(x a_1) \cdots (x a_n)$ where $a_i \in k$. [Hint: for the "if" part, derive from the existence of the element *r* that $_R R$ has a composition series of length $\geq n$.]

¹Here I mean simple in the weaker (*k*-algebra) sense, that *R* has no nontrivial proper 2-sided ideals.