Problem Set 1

Do problems 1 and 2 . Then do 3 or 4 , and 5 or 6 . Use only the material we've covered so far in the notes. (You may use results stated but not proved, provided they aren't exercises!)
(1) Let M be a complex manifold. Assume M is compact and connected, and let $f \in \mathcal{O}(M)$. Show that f is constant.
(2) Let V and W be vector spaces (over the same field). Prove that $\bigwedge^{n}(V \oplus$ $W) \cong \oplus_{p+q=n} \wedge^{p} V \otimes \wedge^{q} W$.
(3) In the following, I is a multi-index, x_{j} are local coordinates on a manifold, ω and μ are p - resp. q-forms, and ξ is a vector field. Show the following (locally is ok):
(a) $\left.\frac{\partial}{\partial x_{j}}\right\lrcorner d x_{I}=\left\{\begin{array}{cc}0, & j \notin I \\ (-1)^{\ell-1} d x_{I \backslash\{j\}}, & j=i_{\ell} \in I\end{array}\right.$
(b) $\left.\xi\lrcorner(\mu \wedge \omega)=(\xi\lrcorner \mu) \wedge \omega+(-1)^{q} \mu \wedge(\xi\lrcorner \omega\right)$
(4) Check the formula (cf. page 6 of the notes)

$$
d \omega\left(\xi^{0}, \ldots, \xi^{p}\right)=\begin{gathered}
\sum_{0 \leq j \leq p}(-1)^{j} \xi_{j}\left\{\omega\left(\xi^{0}, \ldots, \widehat{\xi}^{j}, \ldots, \xi^{p}\right)\right\} \widehat{\xi^{k}} \\
\sum_{0 \leq j<k \leq p}(-1)^{j+k} \omega\left(\left[\xi^{j}, \xi^{k}\right], \xi^{0}, \ldots, \widehat{\xi}^{j}, \ldots, \xi^{k}, \ldots, \xi^{p}\right)
\end{gathered}+
$$

in the special case where $\operatorname{dim} M=2$ and ω is a 1 -form (so $p=1$). (Just do it in local coordinates x, y.)
(5) Make explicit and verify the formula $\Pi_{*} d \omega+d \Pi_{*} \omega=I_{1}^{*} \omega-I_{0}^{*} \omega$ from the notes (p. 8).
(6) Show that the (real) de Rham cohomology of $\mathbb{R}^{2} / \mathbb{Z}^{2}$ has (in degrees $0,1,2$) respective dimensions $1,2,1$. [Hint: the torus acts transitively on itself by translation. Use the Observation on p. 8 of the notes.]

