Problem set 4

- (1) Referring to the diagram for the five-lemma on p. 66 of the notes, you'll recall that I did injectivity of f_3 in class. Prove the surjectivity of f_3 .
- (2) This problem is about the covariant functor $Hom_{\mathcal{C}}(X, -)$ where $X \in \mathcal{C}$, and its first right-derived functor $Ext^{1}_{\mathcal{C}}(X, -)$.
 - (a) Show in general that Hom(X, -) is left-exact.
 - (b) Specializing to $\mathcal{C} = Ab$, find an injective resolution of \mathbb{Z}_m .
 - (c) Use this resolution to compute $Ext^1(\mathbb{Z}_m,\mathbb{Z}_n)$.
- (3) This problem is set on a compact Riemann surface. Let \mathcal{M}^* be the sheaf of not-identically-zero meromorphic functions, and \mathcal{D} the sheaf of divisors (so that $H^0(\mathcal{D}) = Div(M)$). Show that every line bundle $L \to M$ is of the form $\mathcal{O}(D)$ for some $D \in Div(M)$ if and only if $H^1(M, \mathcal{M}^*) = \{0\}$. [Hint: start by writing down a short exact sequence involving \mathcal{D} and \mathcal{M}^* , and checking that \mathcal{D} is flasque (or fine).]
- (4) Let M be a compact Riemann surface of genus g, D ∈ Div(M).
 (a) Prove that if deg D > 2g 2, then i(D) = 0.
 - (b) Likewise, show that if deg D < 0, then $\ell(D) = 0$.
- (5) Next let M have genus $g \ge 2$.
 - (a) Prove that M has a morphism (i.e. holomorphic map) to \mathbb{P}^1 of degree $\leq g+1$. [Hint: try thinking about functions with pole at one point, and otherwise holomorphic.]

(b) Prove that M has a morphism to \mathbb{P}^1 of degree $\leq g$. [Hint: let $p \in M$, and look at i((g-2)[p]).]