HODGE THEORY MIDTERM EXAM

Hand in five.

(1) Consider the two complex 2-tori $T_1 = \mathbb{C}^2/\Lambda_1$, $T_2 = \mathbb{C}^2/\Lambda_2$, where (writing ζ for a 5th root of 1)

$$\Lambda_1 = \mathbb{Z}\left\langle \left(\begin{array}{c}1\\1\end{array}\right), \left(\begin{array}{c}\zeta\\\zeta^2\end{array}\right), \left(\begin{array}{c}\zeta^2\\\zeta^4\end{array}\right), \left(\begin{array}{c}\zeta^3\\\zeta\end{array}\right)\right\rangle$$

and

$$\Lambda_2 = \mathbb{Z}\left\langle \left(\begin{array}{c}1\\0\end{array}\right), \left(\begin{array}{c}0\\1\end{array}\right), \left(\begin{array}{c}\sqrt{-2}\\\sqrt{-5}\end{array}\right), \left(\begin{array}{c}\sqrt{-3}\\\sqrt{-7}\end{array}\right)\right\rangle.$$

- (a) Decide whether each torus is an abelian variety.
- (b) Find a nontrivial automorphism of T_1 , and interpret this Hodge-theoretically $(H^1(T_1))$.
- (2) Let \mathbb{H} be Hamilton's quaternions, $U \subset \mathbb{R}^4$ be an open set, and \mathfrak{F} be the set of smooth \mathbb{H} -valued functions on U. Show that $D := \frac{\partial}{\partial x} i\frac{\partial}{\partial y} j\frac{\partial}{\partial z} k\frac{\partial}{\partial w}$, viewed as an operator from \mathfrak{F} to itself, is elliptic.
- (3) Find an explicit basis for $H^{1,1}_{pr}(X)$, where X is the Fermat quintic surface in \mathbb{P}^3 .
- (4) (a) Write a period matrix for the HS on H¹(E) ⊗ H¹(E), where E is an elliptic curve with holomorphic differential ω.
 (b) Is this HS irreducible? [Hint: consider the automorphism σ of E × E exchanging factors.]
- (5) Fix $V_{\mathbb{Z}}$ and Q (symmetric), and let D be the period domain for weight 2 HS on V polarized by Q with Hodge numbers $h^{2,0} = 1 = h^{0,2}$ (so $h^{1,1} = \dim(V) - 2$).

(a) Prove the IPR is trivial. [Hint: the formula for \mathfrak{g} on p. 205 may be helpful.]

(b) Prove that $G_{\mathbb{R}} = Aut(V_{\mathbb{R}}, Q)$ acts transitively on D. [See hints on HW 6.]

(6) The spectral sequence on pp. 226-7, for the double complex $K^{a,b} := A^b(D^{[a+1]})$, degenerates at E_2 . Prove the weaker statement that $d_2 = 0$. [Hint: you will need to use a result in §II.D, the explicit description of d_2 , and find an argument that the spectral sequence is defined over \mathbb{Q} (or at least \mathbb{R}).]