
COUNTING, SUMS AND SERIES

MATT KERR

– to Bob and Sandy, my first teachers; and to the many students who inspire me –

Abstract. Based on lectures given to high-school students at the
Alberta Summer Math Institute, this is a swift but self-contained
tour of power sums, zigzag numbers, updown mountains, discrete
Fourier transforms, and special values of L-functions.

1. Power sums and Bernoulli numbers

1.1. Finite sums. Perhaps anticipating a long quiet morning to read
Goethe, the 18th century German schoolmaster charged his pupils with
the task of calculating the lengthy sum 1 + 2 + 3 + · · · + 100. To his
amazement (and, one imagines, vast chagrin), in a matter of seconds an
8-year old student named Carl Friedrich Gauss walked up with 5, 050
written on his tablet. Keeping in mind that in 1785, tablets were made
out of slate, the teacher could not plausibly accuse the kid of Googling
the answer. (The lesser-known part of the story is that when they went
out for lunch, little Carl hit on his idea of curvature while trying to
hold a large slice of pizza.)

So how did Gauss do it? He simply made 50 pairs

1 +2
︷ ︸︸ ︷
+3 + · · ·+ 5

︷ ︸︸ ︷
0 + 5 1 + · · ·+ 9︸ ︷︷ ︸ 8 + 9 9 + 1︸ ︷︷ ︸ 00

out of the terms of the sum, each of which summed to 101, resulting in
a grand total of 50× 101 = 5050. We can rewrite this more compactly
in sigma notation:1

100∑
i=1

i = 5050.

1For a sequence {ak}, we will need the basic properties:
• c
∑n

k=1 ak =
∑n

k=1 cak;
•
∑n

k=1 1 = n; and
•
∑n

k=1(ak ± bk) =
∑n

k=1 ak ±
∑n

k=1 bk.

1
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More generally, suppose we would like to find

S(n) :=
n∑
i=1

i.

To proceed, observe (bear with me now) that
(i+ 1)2 − i2 = 2i+ 1

=⇒
n∑
i=1
{(i+ 1)2 − i2} =

n∑
i=1

(2i+ 1)

=⇒
n∑
i=1

(i+ 1)2 −
n∑
i=1

i2 = 2
n∑
i=1

i+
n∑
i=1

1

=⇒ (n+ 1)2 − 12 = 2S(n) + n

=⇒ n2 + �2n+���1− 1 = 2S(n) +�n

=⇒ S(n) = n2 + n

2 = n(n+ 1)
2 .

The final answer is (in retrospect) exactly what you would get from
Gauss’s trick, and this argument seems more complicated and less con-
ceptual (a common complaint about algebra). So why did I use this
approach? Because it generalizes well:
Exercise 1.1. Find formulas for ∑n

i=1 i
2 and ∑n

i=1 i
3.

How does this sequence continue? That is, what is the general for-
mula for the kth power sum ∑n

i=1 i
k? The surprisingly deep answer

will take us back before Gauss (1777-1855), to the time of Leonhard
Euler (1707-1783), Jakob Bernoulli (1655-1705) and Johann Faulhaber
(1580-1635).

1.2. Binomial numbers.
Definition 1.2. The binomial number(

n

k

)
:= n(n− 1) · · · (n− k + 1)

k(k − 1) · · · 1 = n!
(n− k)!k! =

(
n

n− k

)
counts how many ways you can choose k objects from a set of n.

The numerator of the fraction has k factors, reflecting your k choices;
we divide by k! = k(k − 1) · · · 1 because there are that many ways of
choosing the same k elements in a different order, and we don’t care
about order. Now

(x+ y)n =
n times︷ ︸︸ ︷

(x+ y) · · · (x+ y)
= · · ·+ Cxkyn−k + · · ·
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where C is the number of ways to choose k of the (x + y)’s to extract
an x from – that is,

(
n
k

)
. So we get the binomial formula:

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k.

Exercise 1.3. Find
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
n

)
.

Pascal’s triangle facilitates the quick computation of binomial num-
bers:

01

1 1

1 2 1

1 3 3 1

1 4 6 4 1

...and so on...

row

1

4

2

3

Each number in the triangle is (by definition) the sum of the numbers
pointing to it.

Exercise 1.4. Write out three more rows.

Why does this work? That is, why does the kth entry in the nth row2

equal
(
n
k

)
? This is tied to the binomial formula:

(x+ y)4 = (x+ y)(x+ y)3

= x(x3 + 3x2y + 3xy2 + y3)
+ y(x3 + 3x2y + 3xy2 + y3)
1 3 3 1

1 3 3 1
1 4 6 4 1

Another way of saying this is the identity(
n

i

)
+
(

n

i+ 1

)
=
(
n+ 1
i+ 1

)
.

Exercise 1.5. Can you show that
(
n
k

)
equals the number of different

paths, following the arrows, from the top of Pascal’s triangle to the kth

position in the nth row?
2The entries are numbered 0 to n.
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1.3. Zigzag numbers. In the same spirit, drawing Seidel’s triangle

z a g

1

0

0

0

0

row

1

4

2

0

5

3

6

0

0

z 
i g

we have the

Definition 1.6. The zigzag number
[
n
k

]
is the number of paths

(along the arrows) from the top to the kth entry in the nth row. (En-
tries are counted in the direction of the arrows. The 0 in each row is
considered the 0th entry; that is, for n > 0,

[
n
0

]
= 0.)

Exercise 1.7. Find the first few rows worth of zigzag numbers. What
do you notice? Convince yourself that the identity[

n
k

]
=
[

n
k − 1

]
+
[
n− 1
n− k

]
follows from the observation that paths not passing through the (k−1)st

spot in the nth row, pass through the (n − k)th place in the (n − 1)st
row.

We’ll be especially keen on the numbers τn :=
[
n
n

]
, which we’ll call

zig numbers for n odd and zag numbers for n even; the first few are:
n 0 1 2 3 4 5 6 7 8 9
τn 1 1 1 2 5 16 61 272 1385 7936

Proposition 1.8. For 0 < k < n (on the interior of the triangle),

(1.1)
[
n
k

]
=
b k−1

2 c∑
i=0

(−1)i
(

k

2i+ 1

)
τn−2i−1

(1.2)
[
n
k

]
=
bn−k

2 c∑
i=0

(−1)i
(
n− k

2i

)
τn−2i
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Proof. We will use induction: assume that we know both identities for

all the zigzag numbers coming before
[
n
k

]
in row n, and in all previous

rows, and try to prove for
[
n
k

]
. Now, there is a small problem with

this strategy: since (for example)
[
n
1

]
=
[
n− 1
n− 1

]
+
[
n
0

]
, we’ll have

to know something about the outer (noninterior) terms to get started
in each row. So do (1.1) and (1.2) hold for these terms too?

As you may have guessed, the answer is NO: (1.1) fails for
[
n
n

]
for

n even, and (1.2) fails for
[
n
0

]
for n odd. These are the only failures,

and they are “connected”, as they all happen on the “ZAG” edge of
the triangle. So we have to correct the formulas in those two cases: for
n even and k = n, replace (1.1) by

(1.3)
[
n
n

]
=
bn−1

2 c∑
i=0

(−1)i
(

n

2i+ 1

)
τn−2i−1 + (−1)n2 ;

and for n odd and k = 0, replace (1.2) by

(1.4)
[
n
0

]
=
bn2 c∑
i=0

(−1)i
(
n

2i

)
τn−2i + (−1)

n+1
2 .

Now we are ready to proceed with the induction. By assumption,
we have (from (1.1)/(1.3))

(1.5)
[

n
k − 1

]
=
b k−2

2 c∑
i=0

(−1)i
(
k − 1
2i+ 1

)
τn−2i−1

(
+(−1)# if needed

)
and (from (1.2)/(1.4))

(1.6)
[
n− 1
n− k

]
=
b k−1

2 c∑
i=0

(−1)i
(
k − 1

2i

)
τn−2i−1

(
+(−1)# if needed

)
.

Recalling that
[

n
k − 1

]
+
[
n− 1
n− k

]
=
[
n
k

]
and

(
k−1
2i+1

)
+
(
k−1
2i

)
=(

k
2i+1

)
, we now simply add (1.5) and (1.6) (ignoring the (−1)# terms);

this immediately gives (1.1) for k < n or k = n odd. For n even and
k = n, (1.6) contributes a (−1)n2 , and so we obtain (1.3). �
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Exercise 1.9. Complete the proof (i.e. deduce (1.2)/(1.4)) by using[
n

k − 1

]
=
[
n
k

]
−
[
n− 1
n− k

]
and inducing the other way.

As an immediate consequence of the proof (specifically, (1.4)), we
obtain a result which will be very useful later:

Corollary 1.10. ∑bn2 ci=0 (−1)i
(
n
2i

)
τn−2i =

{
(−1)n−1

2 , n odd
0, n even .

1.4. “Alternating” permutations.

Definition 1.11. An updown sequence of length n is a sequence
i1, i2, . . . , in such that {i1, i2, . . . , in} = {1, 2, . . . , n} (it is a permuta-
tion, i.e. it contains each number once) and i1 < i2 > i3 < · · · in (the
“updown” or “alternating” feature). Let εn be the number of these.

Exercise 1.12. Compute a few values of εn (say, for n = 1 to 5 or 6).
It is helpful to draw “updown mountains” to depict the sequences: for
example,

2 < 5 > 3 < 4 > 1

i
1

i
2

i
3

i
4

i
5

i
1

i
2

i
3

i
4

i
5

1

2

3

4

5

visualizes

You should notice a rather striking coincidence!

So, what is the correspondence between updown sequences and zigzag
numbers? Recall that the latter count paths in Seidel’s triangle. For

instance, τ5 =
[

5
5

]
is the number of paths from the top of the triangle
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to the last (enlarged) dot in the 5th row, like this path:

row

1

4

2

0

5

33

2

1 2
3

2
1

1

0

4

0
1

0

20

1

0

4 35

Here the numbers just indicate the values of n and k, and the circles
indicate where the path enters each row. We have circled those values
of k because they are the key to making an updown sequence out of
the path.

Here’s how: the list of circled values, from bottom to top, is

(1.7) 3, 1, 2, 1, 1.

Now draw a vertical stack of 5 boxes, and label them (from bottom to
top) 1 thru 5. The first entry of (1.7) is 3, and we circle that label in
the stack. Now draw new boxes to the left of each box except for the
one with the circle, and label these from top to bottom (1 thru 4). The
second entry of (1.7) is 1, and we circle that label in the new column.
Continuing this process produces the figure below on the left:

2

start

1

2

5

2

3

41

3

21

3

4

1

1

i
1

i
2

i
3

i
4

i
5

1

2

3

4

5

The circles now give the graph of an updown sequence, as shown on
the right: 1 < 4 > 2 < 5 > 3.
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The algorithm just described yields a “map” from paths in the Seidel
triangle (following the arrows) to updown sequences. You may wish to
check that the sequence so obtained is always “updown”!
Exercise 1.13. (a) Can you find a reverse correspondence? (This will
confirm that the map is 1-to-1 and onto, so that τn = εn.)

(b) More generally, can you prove that
[
n
k

]
is the number of up-

down sequences of length n in which i2− i1 ≤ k? (It’s also the number
of updown sequences with i1 ≤ k.)
1.5. Bernoulli numbers.
Definition 1.14. The Bernoulli numbers are an infinite sequence
B0, B1, B2, . . . of rational numbers, starting with B0 = 1, and thereafter
defined recursively by the formulas

(1.8)
n∑
k=0

(
n+ 1
k

)
Bk = 0

for n ≥ 1. They come up all over the place, in analysis, combinatorics,
number theory, physics, etc.

It’s a bit more convenient to add Bn+1 to both sides of (1.8) to get
n+1∑
k=0

(
n+ 1
k

)
Bk = Bn+1.

This can be written more compactly (in a formal3 shorthand known as
“umbral calculus”) as
(1.9) (B + 1)n+1 = Bn+1,

which means “expand the left-hand side formally” via the binomial
formula, then replace Bk everywhere by Bk.
Example 1.15. To start you off, we have:

��B2 + 2B1 + 1 = ��B2 =⇒ B1 = −1
2 ,

��B3 + 3B2 + 3B1 + 1 = ��B3 =⇒ B2 = 1
6 .

Exercise 1.16. Find the next few. What pattern(s) can you see?
What can you say about the denominators? [Hint: induction!] When
you’re done, turn the page.

3The word “formal” sounds as if it should mean “very rigorous and careful”,
perhaps pedantically so. In math, it often means (as it does here) the opposite:
going through the motions without regard as to meaning or correctness. You see,
we mathematicians have craftily encoded our disdain for formalities in the language
itself!
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So here are some more Bernoulli numbers:

n Bn

3 0

4 − 1
30

5 0

6 1
42

7 0

8 − 1
30

9 0

10 5
66

11 0

12 − 691
2730

13 0

14 7
6

... ...

The odd ones (except B1) are evidently zero, and the signs on the even
ones apparently alternate. (A uniform proof of these facts will come
later.) By induction, denominators (of Bn=2m) are clearly bounded by
(n+ 1)!; the even better bound of 2 · 3 · 5 · · · (2m− 1)(2m+ 1) follows
if you assume the B2k+1 = 0.

As you can see, the rational arithmetic makes them get quickly awful
to compute. Bernoulli himself (~1690) did the first 10 or so. Euler lists
the first 30 in his Calculi Differentialis (1755). Perhaps he found an
alternative to brute force?

Exercise 1.17. Try multiplying B2m (m ≥ 1) by 22m−1(4m−1). Notice
anything? (Turn the page when you’re ready.)
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The first few values are
m = 1 2 3 4

22m−1(4m − 1)B2m = 1 −4 48 −1088

from which you might have noticed that they are divisible by m. So di-
viding by m (and multiplying by (−1)m−1) gives 1, 2, 16, 272, . . . which
should look quite familiar, as they are none other than the odd τ ’s!!!!
(I did say the Bernoulli numbers are ubiquitous!)

Though these coincidences just can’t be coincidental, actually prov-
ing the following is much harder:

Theorem 1.18. B2m = (−1)m−12m
42m − 4m τ2m−1.

This gives a much more efficient way to compute the Bernoulli num-
bers. It’s unlikely that this particular method was known to Euler,
however, since Seidel’s triangle dates from 1877.

1.6. Faulhaber’s formula. We now describe the first main applica-
tion of Bernoulli numbers, which they were invented to solve: to com-
pute the power sums

Sk(n) =
n∑
i=1

ik.

Working in our funny “umbral” notation, (i+ 1 +B)k+1− (i+B)k+1 =

=
k+1∑
j=0

(
k + 1
j

)
ij(1 + B)k+1−j −

k+1∑
j=0

(
k + 1
j

)
ijBk+1−j

=
k+1∑
j=0

(
k + 1
j

)
ij
{

(1 + B)k+1−j − Bk+1−j
}
.

But by (1.9), the quantity in braces is zero for k+1−j 6= 1 (i.e. j 6= k),
and so the above

= (k + 1)ik
{

1 +�����B1 − B1
}

= (k + 1)ik.

So altogether we have

(1.10) ik = 1
k + 1

{
(i+ 1 + B)k+1 − (i+ B)k+1

}
.

That’s a curiously complicated formula for ik. What of it?
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Theorem 1.19 (Faulhaber [first few cases], 1631; Bernoulli [general
form], 1713; Jacobi [rigorous proof], 1834). The power sums are given
by

Sk(n) = 1
k + 1

k∑
j=0

(
k + 1
j

)
Bj(n+ 1)k+1−j.

Proof. Apply ∑n
i=0 to both sides of (1.10) to obtain

Sk(n) = 1
k + 1

n∑
i=0

{
(i+ 1 + B)k+1 − (i+ B)k+1

}
,

which is a collapsing sum, telescoping to
1

k + 1
{

(n+ 1 + B)k+1 − Bk+1
}
.

Expanding via the binomial formula and replacing Bj by Bj yields

1
k + 1


k+1∑
j=0

(
k + 1
j

)
(n+ 1)k+1−jBj − Bk+1

 ,
where finally the Bk+1 serves to cancel the (k+1)st term of the sum. �

Exercise 1.20. Use Theorem 1.19 to recover the formula for k = 1,
and to obtain a formula for k = 4.

1.7. Bernoulli polynomials. These yield a slightly more elegant form
of Faulhaber’s formula. We will make more substantial use of them
later on.

Definition 1.21. Bk(x) := ∑k
j=0

(
k
j

)
Bjx

k−j.

Example 1.22. We have

B3(x) = x3 − 3
2x

2 + 1
2x ,

B4(x) = x4 − 2x3 + x2 − 1
30 ,

B5(x) = x5 − 5
2x

4 + 5
3x

3 − 1
6x .

Corollary 1.23. Sk(n) = 1
k+1 {Bk+1(n+ 1)−Bk+1} .

Proof. Recognize Bk+1(n+1) = ∑k+1
j=0

(
k+1
j

)
Bj(n+1)k+1−j as the right-

hand side in Theorem 1.19, plus Bk+1. �

Exercise 1.24. Give another proof of this using
(
`
m

)
=
(
`+1
m+1

)
−
(

`
m+1

)
.

[Hint: what is Bk+1(j + 1)−Bk+1(j)?]
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Remark 1.25. As discovered by Euler, the Bernoulli numbers are also
related to the infinite inverse power sums (k > 1)

1 + 1
2k + 1

3k + · · · =:
∞∑
`=1

1
`k
.

This is the direction in which we shall now embark.

2. Infinite sums and generating functions

Toward the end of sixth grade, a classmate informed me that he
had taught himself trigonometry. “I feel like Columbus”, he said. No,
actually, that was a speaker at a recent conference, describing his new
computation, to which a colleague in the audience flatly exclaimed,
“Wow, that’s modest.” Anyway . . . it’s likely that my classmate said
something equally self-congratulatory, given that humility is not one of
the many virtues of 11-year-olds, so it might as well be Columbus.

Not to be left out, I ransacked my parents’ books for a digest of the
subject. I came across a thin volume entitled “Quick Calculus”, which
appeared to match my sixth-grade attention span while appealing to
my ambition to reach the New World first. The truth is, a quarter of
the way across I went blind from staring at the sun and fell overboard.
Which is to say that, after nodding over the pages on sine and cosine, I
reached the part on limits of functions, a concept I could barely grasp
and whose point eluded me entirely, and gave up.

The first four sections that follow are my idiosyncratic version of
“quick calculus”. There is a clear motivation, which hopefully circum-
vents the customary indigestibility of a “digest”. Namely, we want
to understand connections between infinite sums, functions, and se-
quences (like the Bernoulli and updown numbers), and I will only de-
velop what is necessary for that. If you have received your Calculus
vaccination, you can skip (or skim) to §§2.5-6, which contain the proof
of Theorem 1.18.

2.1. Infinite series. Let {Ak}∞k=1 (that is, A1, A2, A3, . . .) be a se-
quence of real numbers.

Definition 2.1. We say that Ak converges to the limit L (written
limk→∞Ak = L, or Ak → L) if for each real ε > 0 – no matter how
small – there exists K ∈ N such that

k ≥ K =⇒ |ak − L| < ε.

That is, one can get as close as desired to L by going out far enough
in the sequence.
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Suppose we want to sum the infinite series ∑∞k=1 ak, for some se-
quence ak → 0. Defining the sequence of partial sums

An :=
n∑
k=1

ak,

we shall say that “the series converges” with sumS , written∑∞k=1 ak =
S , if An → S .

Example 2.2. Let ak = xk, with |x| < 1, so that

An = 1 + x+ · · ·+ xn.

Subtracting
xAn = x+ · · ·+ xn + xn+1

yields (after cancellations)

(1− x)An = 1− xn+1,

whence the geometric series

S =
∞∑
k=1

xk = lim
n→∞

An = lim
n→∞

1− xn+1

1− x = 1
1− x.

Example 2.3. Let ak = 1
k
. Then the harmonic series∑

ak = 1 + 1
2 +

(1
3 + 1

4

)
︸ ︷︷ ︸

> 1
2

+
(1

5 + 1
6 + 1

7 + 1
8

)
︸ ︷︷ ︸

> 1
2

+ · · ·

cannot converge, as it grows without bound. (As we shall see, ∑ 1
k2 ,∑ 1

k3 , etc. have no such problem.)

2.2. Definite integral. Another game you can play with taking limits
of sums is finding the area A under a curve:

n n 1.  .  .1 2 3

n

y=xk
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Denoting by An the sum of the areas under the n “vertical” boxes, we
evidently have

An =
n∑
i=1

1
n
·
(
i

n

)k
= 1
nk+1Sk(n),

which by Faulhaber’s formula

= nk+1 + lower-order terms
nk+1(k + 1) = 1

k + 1 + c1

n
+ c2

n2 + · · ·+ ck+1

nk+1

for some constants ci. According to the picture, each of these An over-
estimates A, whose correct value is found by shrinking the widths of
the boxes to zero:

A = lim
n→∞

An = 1
k + 1 .

This area is called the definite integral of xk over the interval [0, 1],
denoted ˆ 1

0
xkdx.

Exercise 2.4. How about the area under y = xk from 0 to r?

What if we consider y = 1
x
? The area from 0 to 1 (or to anywhere) is

∞, since you can insert “horizontal” boxes between the graph and the
y-axis whose sum-of-areas is the harmonic series. So consider instead
the area from 1 to x:

1 x

1

1

x

and call this ln(x), the natural logarithm. The picture suggests that
the rate of change of ln(x) against x is the height of the graph at that
value of x, i.e. 1

x
. So then the rate of change of ln(ax) is(

rate of change of ax
with respect to x

)
×
(

rate of change of ln(ax)
with respect to ax

)
= a · 1

ax
= 1
x
.
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Finally, the rate of change of ln(a) + ln(x) is again 1
x
, since ln(a) is

constant; while at at x = 1, ln(a) + ln(x) = ln(a) + ln(1) = ln(a · 1).
Conclude that ln(a) + ln(x) and ln(ax) have the same rates of change
everywhere and the same values at x = 1, so are the same function!
Another way to say this is
(2.1) ln(ab) = ln(a) + ln(b).

Now define the exponential function exp(x) to be the inverse
function of ln(x). That is,

y = exp(x) defn.⇐⇒ x = ln(y).
Then by (2.1),

ln(exp(a) exp(b)) = ln(exp(a)) + ln(exp(b)) = a+ b,

whereupon taking exp of both sides yields
(2.2) exp(a) exp(b) = exp(a+ b).
So exp behaves like “something raised to a power”. That something is

e := exp(1) ' 2.71828182845904523536 . . . ,
and exp(x) = ex.

2.3. Slopes of graphs. Continuing on with the “rate of change” theme,
here is a more solid definition for the rate of change of f(x) with respect
to x:
Definition 2.5. The derivative of f at a is

df

dx
(a) = f ′(a) := lim

h→0

f(a+ h)− f(a)
h

.

You should visualize this as the slope of the (red) tangent line at
(a, f(a)), given as the limit of slopes of (green) secant lines through
(a, f(a)) and (a+ h, f(a+ h)):

h
slope =

f(a+h)−f(a)

=f’(a)

y=f(x)

a a+h

f(a)

f(a+h)

slope
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We develop this through a series of examples, which are needed in the
sequel.

Example 2.6. The discussion in §2.2 translates to the calculation

ln′(a) = lim
h→0

ln(a+ h)− ln(a)
h

= lim
h→0

area under y = 1
x
from a to a+ h

h
= 1
a
,

since the area in the numerator is approximated by a box of width h
and height 1

a
.

Example 2.7. For f(x) = xk, we have

f ′(x) = lim
h→0

(x+ h)k − xk
h

= lim
h→0

khxk−1 + h2(· · · )
h

= kxk−1.

Example 2.8. Since exp and ln are inverses, their graphs are reflec-
tions of one another about the line y = x:

m
slope=

1y=exp(x)

x=ln(y)

x

y

y

x

a

1

exp(a)

1 exp(a)

a

slope=m

and so their tangent lines are too, with slope m = rise
run reflected to

run
rise = 1

m
. Thus

exp′(a) = 1
ln′(exp(a)) = 1(

1
exp(a)

) = exp(a),

i.e. the derivative of ex is ex.

Example 2.9. Turning to trigonometric functions, we make use of a
trig identity to write

sin′(x) = lim
h→0

sin(x+ h)− sin(x)
h

= lim
h→0

sin(x) cos(h) + sin(h) cos(x)− sin(x)
h

= (sin(x)) lim
h→0

cos(h)− 1
h

+ (cos(x)) lim
h→0

sin(h)
h

.
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To evaluate the last two limits, look at the unit circle diagram

D

1
sin(h)

cos(h)

h

A B

C

with similar triangles ABC and ACD (so that |CD| = sin(h)
cos(h) = tan(h)).

The angular sector with angle4 h contains ABC but is contained by
ACD; taking areas, this gives

1
2 · cos(h) · sin(h) < h

2 <
1
2 · 1 ·

sin(h)
cos(h) .

Dividing through by sin(h) and taking inverses gives

cos(h) < sin(h)
h

<
1

cos(h) ,

whose outer terms limit to 1, forcing the inner term to do the same.
Then the Pythagorean theorem gives

1− cos(h)
h

= 1− cos2(h)
h(1 + cos(h)) = sin2(h)

h(1 + cos(h) = sin(h)
h
· sin(h)

1 + cos(h)
which limits to 1 · 0 = 0. We conclude that sin′(x) = cos(x).
Exercise 2.10. Check that cos′(x) = − sin(x). Then use the examples
below to find tan′(x) and sec′(x).
Example 2.11. For a product of functions, f(x) = F (x)G(x), we
compute

f ′(x) = lim
h→0

F (x+ h)G(x+ h)− F (x)G(x)
h

= lim
h→0

F (x+ h)G(x+ h)− F (x+ h)G(x) + F (x+ h)G(x)− F (x)G(x)
h

= F (x) lim
h→0

G(x+ h)−G(x)
h

+G(x) lim
h→0

F (x+ h)− F (x)
h

= F (x)G′(x) + F ′(x)G(x).

4All our angles are in radians: i.e. h is just the length of the arc on the circle
from the x-axis to C.
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Example 2.12. If f(x) = 1/F (x), then

f ′(x) = lim
h→0

1
F (x+h) −

1
F (x)

h

= lim
h→0

−1
F (x+ h)F (x) ·

F (x+ h)− F (x)
h

= −F
′(x)

(F (x))2 .

Example 2.13 (Quotient rule). Combining the last two examples, for
a quotient f(x) = F (x)

G(x) = F (x) · 1
G(x) , we get

f ′(x) = G(x)F ′(x)− F (x)G′(x)
G(x)2 .

Remark 2.14. One application of derivatives is to computing limits.
Suppose that f(x) and g(x) both limit to 0 as x → 0. To what limit
does their ratio tend? L’Hôpital’s rule

lim
x→0

f(x)
g(x) = lim

x→0

f ′(x)
g′(x)

can sometimes help. For instance, limx→0
sin(x)
x

= limx→0
cos(x)

1 = 1.

2.4. Power series. So far we have only discussed summing series of
numbers. But it’s equally natural to consider function series: when
those numbers depend on x, so will their sum (where it exists). If the
functions we are summing are of a particular type, then the series go
by that name as well – like trigonometric series for sums of sines or
cosines, and power series for sums of powers of x.

For instance, given a function f(x), we can look at the power series

(2.3) g(x) :=
∑
k≥0

f (k)(0)
k! xk

for x near 0. (Here f (n)(x) means f
n times︷ ︸︸ ︷
′ ′ ′ ··· ′(x), and we are assuming

that f is a reasonably “nice” function so that all of those successive
derivatives exist, at least at 0.) Formally taking the derivative of both
sides of (2.3) n times yields

g(n)(x) =
∑
k≥n

f (k)(0)
(k − n)!x

k−n,

whereupon setting x = 0 gives
(2.4) g(n)(0) = f (n)(0) (∀n).
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Example 2.15. Let’s look at f(x) = 1
1−x : differentiating repeatedly

gives
f ′(x) = 1

(1−x)2 =⇒ f ′(0) = 1
f ′′(x) = 2

(1−x)3 =⇒ f ′′(0) = 2
... ...

f (k)(x) = k!
(1−x)k+1 =⇒ f (k)(0) = k!,

and so g(x) = ∑
k≥0

k!
k!x

k = ∑
k≥0 x

k . . . which, by Example 2.2,
recovers f(x)!

Indeed, for any analytic function (i.e. all the functions you know),
(2.4) means that (where the sum of the series exists, i.e. at least for
small x) f(x) = g(x) are the same function.

Example 2.16. If f(x) = ex, then f (n)(x) = ex =⇒ f (n)(0) = 1 (∀n)
=⇒ ex = ∑

k≥0
xk

k! , which holds for all x.

Example 2.17. For f(x) = sin(x), we find a repeating pattern (of
length four):

f ′(x) = cos(x) =⇒ f ′(0) = 1
f ′′(x) = − sin(x) =⇒ f ′′(0) = 0
f (3)(x) = − cos(x) =⇒ f (3)(0) = −1
f (4)(x) = sin(x) =⇒ f (4)(0) = 0,

so that sin(x) = x − x3

3! + x5

5! −
x7

7! + · · · . Taking derivatives on both
sides gives cos(x) = 1− x2

2! + x4

4! −
x6

6! + · · · . Both sums hold for all x.

Example 2.18. What about the functions tan(x) = sin(x)
cos(x) and sec(x) =

1
cos(x)?

1

y=sin(x) y=cos(x) y=tan(x) y=sec(x)

π

Though one can compute successive derivatives by “brute force” via the
quotient rule, the resulting functions quickly become horrible. Still, we
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can get the first few terms of the power series representations this way:

tan(x) = x+ 2x3

3! + 16x5

5! + 272x7

7! + · · ·

and sec(x) = 1 + x2

2! + 5x4

4! + 61x6

6! + · · · ,

where the presence of only odd (resp. even) powers of x in tan (resp.
sec) reflects the fact that the function is odd (resp. even).

2.5. Generating functions. Whenever you have an infinite sequence
{ak}∞k=0, a natural problem is to determine what sort of functions are
given by the sums of∑

k≥0
akx

k (generating function) or

∑
k≥0)

ak
xk

k! (exponential generating function).

The solution can be used to prove relations between different sequences
by manipulating the functions, a standard tool in combinatorics.

Example 2.19. We consider the exponential generating function of
the Bernoulli sequence,

f(x) =
∑
k≥0

Bk
xk

k! .

By (1.8) we have ∑n−1
k=0

(
n
k

)
Bk = 0, hence ∑n−1

k=0
Bk

k!(n−k)! = 0, for n ≥ 2.
So

(ex − 1)f(x) =
∑
`≥1

x`

`!
∑
k≥0

Bk
xk

k! =
∑
n≥1

(
n−1∑
k=0

Bk

k!(n− k)!

)
xn = x,

and f(x) = x
ex−1 .

Example 2.20. What if we try the same thing for the zigzag/updown
sequence τk? Dividing the result of Corollary 1.10 by n! gives

bn2 c∑
j=0

(−1)j τn−2j

(2j)!(n− 2j)! =


(−1)

n−1
2

n! , n odd
0, n > 0 even
1, n = 0.

The exponential generating function

g(x) =
∑
k≥0

τk
xk

k!
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then satisfies

cos(x)g(x) =
∑
j≥0

(−1)j x
2j

(2j)!
∑
k≥0

τk
xk

k!

=
∑
n≥0

bn2 c∑
j=0

(−1)j τn−2j

(2j)!(n− 2j)!

xn
=

n=2m+1
1 +

∑
m≥0

(−1)m
(2m+ 1)!x

2m+1

= 1 + sin(x).

Dividing through by cos(x) now gives

(2.5) g(x) = sec(x) + tan(x),

so that taking account of the even-ness of sec(x) and odd-ness of tan(x),
we have

sec(x) =
∑
m≥0

τ2m
x2m

(2m)!
ZAG

and cos(x) =
∑
m≥1

τ2m+1
x2m+1

(2m+ 1)!
ZIG

so that

sec(2m)(0) = τ2m while tan(2m+1)(0) = τ2m+1.

You may have guessed this from the first few terms of the power series
in Example 2.18, but it took a bit more than the quotient rule to prove
it!

Remark 2.21. Equation (2.5) was discovered by D. André in 1881.

2.6. Euler’s identity. A more serious test of this “generating func-
tionology” is whether it can give us the desired relation (Theorem 1.18)
between the even Bernoulli and “zig” numbers, B2m and τ2m−1. With
f(x) as in Example 2.19, first note that

(2.6)
∑
m≥1

B2m
x2m

(2m)! = f(x)−B0
x0

0! −B1
x1

1! = x

ex − 1 − 1 + x

2 .
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We will also make use of an important relation between Examples 2.16
and 2.17: writing5 i :=

√
−1,

eix =
∑
k≥0

(ix)k
k!

=
∑
m≥0

(ix)2m

(2m)! +
∑
m≥0

(ix)2m+1

(2m+ 1)!

=
∑
m≥0

(−1)m x2m

(2m)! + i
∑
m≥0

(−1)m x2m+1

(2m+ 1)!
= cos(x) + i sin(x),

which (using cos(−x) = cos(x) and sin(−x) = − sin(x)) yields

(2.7) eix + e−ix = 2 cos(x) and eix − e−ix = 2i sin(x).

The result

(2.8) eix = cos(x) + i sin(x)

is called “Euler’s identity”.
Now we use (2.6)6 and (2.7) to compute

∑
m≥1

B2m
(
22m − 42m

) i2m︷ ︸︸ ︷
(−1)m x2m

(2m)!

=
∑
m≥1

B2m
(2ix)2m

(2m)! −
∑
m≥1

B2m
(4ix)2m

(2m)!

=
( 2ix
e2ix − 1 − �1 + 2ix

2

)
−
( 4ix
e4ix − 1 − �1 + 4ix

2

)
= 2ix(e2ix + 1)− 4ix

(e2ix − 1)(e2ix + 1) − ix = 2ix(e2ix − 1)
(e2ix − 1)(e2ix + 1) − ix

= 2ix
e2ix + 1 − ix = �2ix− e2ixix−��ix

e2ix + 1

= ix(1− e2ix)
e2ix + 1 = −ix(eix − e−ix)

eix + e−ix

= ix
2i sin(x)
2 cos(x) = x tan(x).

5I’ll say a bit about complex numbers in the next subsection; for now, you can
just interpret this “formally”, as a symbol whose “square” is −1.

6with 2ix and 4ix formally substituted for x



COUNTING, SUMS AND SERIES 23

On the other hand, by Example 2.20,∑
m≥1

τ2m−1
x2m

(2m− 1)! = x
∑
m≥1

τ2m−1
x2m−1

(2m− 1)!
= x tan(x)

as well. Given two power series (as we have here) both summing to
x tan(x), the coefficients of powers of x must be equal: by (2.4), they
are determined by the derivatives of x tan(x) at zero. So we conclude
that

B2m = (−1)m−12m
42m − 4m τ2m−1,

proving Theorem 1.18.

2.7. Complex numbers. So what is this “i”? We can think of it as
a first step in extending the real number line to the “complex plane”:

i

0 1 2−2 −1 1 2−1−2

i

i

i−2

−

2

i

(a,b real)

number "a+bi"

general complex

2+

The resulting complex numbers a + bi (points on this plane) were
invented in the late 1700’s to solve equations.

Example 2.22. 0 = x2 +3x+2 = (x+2)(x+1) has two real solutions
x = −2,−1; while 0 = x2 + x + 1 has (by the quadratic formula)
solutions

x± = −1±
√

12 − 4 · 1 · 1
2 · 1 = −1±

√
−3

2 = −1
2 ±
√

3
2 i.

We can represent these solutions by points in the complex number
plane, or better, by arrows:

−i

1−1

i
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Notice that these (points or arrows) are the flips of each other about the
“real axis”. This flip is called complex conjugation and is written with
a bar: a+ bi = a − bi; complex solutions to real quadratic equations
are always conjugate.

What about arrows is “better”?
• Adding complex numbers can be visualized by adding them:

(a+c)+(b+d)i

a+bi

c+di

• Multiplying complex numbers can be visualized by multiplying
the lengths of the arrows and adding the angles they make with
the x-axis:

2

θ

θ

1

2

2
3

6

θ +θ
1

• By the Pythagorean theorem, eiθ = cos(θ) + i sin(θ) is a point
on the unit circle:

θ

θsin(  )

cos(   )

so we can write any complex number a+bi =
√
a2 + b2eiθ where

θ = arctan( b
a
) (and

√
a2 + b2 is the length of the arrow).

Exercise 2.23. What are e2πi, eπi, eπi
2 ? Convince yourself, more gen-

erally, that e2πi/n =: ζn is an “nth root of 1”, i.e. (ζn)n = 1.
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If this seems bizarre, just remember that once people scorned the idea
of −5 apples and 2

3 of a person, but now we speak of negative bank
balances and the average household with 2.3 kids with alacrity. The
bottom line is that all numbers are theoretical constructs, including
the “real” ones!

3. Discrete Fourier transforms and special values of
L-functions

My junior year in high-school, I worked in a photonics laboratory at
a nearby university,7 using lasers, lenses, and LCD filters to produce
holograms. The underlying mathematics was a “fast” 2-D version (im-
plemented on MATLAB and used to program the filter) of the 1-D dis-
crete Fourier transform described in this section. Almost two decades
later, I was shocked to discover that the 2-variable DFT played an
equally central role in the study of algebraic cycles and number theory!
Below I’ll sketch how Fourier transforms arose and how they relate to
signal processing and Bernoulli numbers, and some interesting infinite
series.

3.1. Fourier series. Here is a good example of revolutionary mathe-
matics motivated by physics.8 Fourier had introduced the heat equa-
tion

∂f

∂t
(x, t)

rate of change
of temperature

with resp. to time

= α2∂
2f

∂x2 (x, t)
concavity of

temp. distribution

7George Mason University, under the inspiring direction of Dr. Ravi Athale
8Though mathematics and physics are now more separate as disciplines than

they were in the 19th Century, this phenomenon continues unabated, with the
unexpected and profound unifying influence of quantum field theory and string
dualities on algebraic geometry, symplectic topology, and number theory over the
past three decades.
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for a periodic9 temperature distribution f(x, t) with initial conditions
f(x, 0) =: f(x):

concavity < 0

position = x

temperature = f

concavity > 0

temperature

temperature
tends down

tends up

He noticed that if you could represent the initial conditions by trigono-
metric10 series

(3.1) f(x) =
∑
n∈Z

ane
inx (an ∈ C)

then
f(x, t) =

∑
n∈Z

(
ane

−α2n2t
)
einx

solved it. This reveals that the highest frequencies are smoothed most
rapidly.

Fourier’s idea that (3.1) should be possible even for discontinuous
f(x) — e.g. the square wave function

3ππ 2π

obtained by “shoving an iron ring halfway into a fire” — caused contro-
versy and led to the rejection of his 1807 paper. Eventually, he became
president of the professional society that rejected his paper, and had it
published in their prestigious journal. (In fact, the so-called Fourier
series of a periodic function — even a continuous one — need not
converge everywhere to the function, unless the function is everywhere
differentiable.)

9Period 2π: that is, think of it as the temperature function on a circle.
10Recall that einx = cos(nx) + i sin(nx). (Also,

∑
n∈Z means

∑∞
n=−∞.)
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3.2. Discrete Fourier transform. This is the finite version, typically
programmed on computers via the “fast Fourier transform” (FFT) al-
gorithm. (Unlike Fourier series and Fourier transforms, this requires
no calculus.) Again we will be dealing with periodic functions, but on
the integers:

f(0), f(1), f(2), . . . , f(N − 1); f(N)︸ ︷︷ ︸
=f(0)

, f(N + 1)︸ ︷︷ ︸
=f(1), etc.

, . . .

You can think of this as an N -point sample of a function on a circle,

N−1

0

1

2

or perhaps just of a function on an interval:

N0 1 2

Now the Nth root of unity11 ζN = e
2πi
N and its powers

5

ζ
5

2

3

4

1

ζ
5th roots of unity in the complex plane5

ζ
5

ζ

will play an important role.

Exercise 3.1. Show that ∑N−1
n=0 ζ

n
N = 0. [Hint: multiply by (1− ζN).]

Can you show that this also holds when ζN is replaced by a power ζkN
(so long as this power is not 1)?

11“unity” here is a fancy way of saying “1”.
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The function ζkmN (of m) cycles through 1 k times as m goes from 0
to N . So it has “frequency k”.

Now set12

Φ(N) := set of functions f : Z/NZ→ C
Φ(N)◦ := the functions with f(0) = 0

Φ(N)◦ := the functions with
N−1∑
n=0

f(n) = 0.

Definition 3.2. The discrete Fourier transform (DFT) is the op-
eration (on functions from Z/NZ to C) sending f to f̂ , where

f̂(k) :=
N−1∑
n=0

f(n)e− 2πikn
N =

N−1∑
n=0

f(n)ζ−knN .

The idea is that f̂(k) measures how much stuff “of frequency k” f(n)
has. The following formula for the inverse DFT makes this plain:

Proposition 3.3. We may recover f from f̂ by

(3.2) f(m) = 1
N

N−1∑
k=0

f̂(k)ζkmN .

Proof. 1
N

∑
k f̂(k)ζkmN = 1

N

∑
k

(∑
n f(n)ζ−knN

)
ζkmN = 1

N

∑
k,n f(n)ζk(m−n)

N

= ∑
n f(n)

{
1
N

∑N−1
k=0 (ζm−nN )k

}
. By Exercise 3.1, the bracketed expres-

sion is 0 if m 6= n in Z/NZ; if m = n it is N
N

= 1. Therefore we get
f(m). �

Accordingly, f̂(k) is sometimes called the kth Fourier coefficient
of f .

3.3. Properties of the DFT.

3.3.1. Duality of Φ◦ and Φ◦. I claim that f ∈ Φ◦ ⇐⇒ f̂ ∈ Φ◦, and
f ∈ Φ◦ ⇐⇒ f̂ ∈ Φ◦.

Exercise 3.4. Prove it! Say f(0) = 0. Can you show that ∑k f̂(k) =
0? [Hint: use the definition of the DFT together with Exercise 3.1.]

12Notation: C = complex numbers; Z/NZ = integers modulo N (i.e. on the
circle, with N ≡ 0).
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3.3.2. Parseval’s formula. Write |a + bi| :=
√
a2 + b2 for the “length”

of a complex number. Notice that

|a+ bi|2 = a2 + b2 = (a+ bi)(a− bi) = (a+ bi)(a+ bi).

Parseval says that

(3.3)
∑
n

|f(n)|2 = 1
N

∑
k

|f̂(k)|2,

which a physicist might read as “f and f̂ have the same energy”.

Exercise 3.5. Using Euler’s identity (2.8), check that eiθ = e−iθ.

Proof of Parseval.∑
k

|f̂(k)|2 =
∑
k

f̂(k)f̂(k) =
∑
k

∑
n

f(n)ζ−nkN

∑
m

f(m)ζmkN

=
∑
m,n

f(n)f(m)
∑
k

(ζm−nN )k︸ ︷︷ ︸
0 if m 6= n
N if m = n

= N
∑
n

f(n)f(n),

so that dividing by N yields the assertion. �

3.3.3. The convolution. The convolution f ? g of f and g is defined
by

(f ? g)(n) :=
N−1∑
`=0

f(`)g(n+ `).

If f is a shift of g – say, f(m) = g(m+ a) – then f ? g tends to develop
a “peak” at n = a (where f and g match in the sum). The remainder
of its behavior is . . . well, convoluted – using one function to smear
the other around.

Exercise 3.6. Show that (f̂ ? g)(k) = f̂(k)ĝ(k), i.e. that convolution
is the same as Fourier transforming both functions, multiplying them,13

then Fourier transforming back.

3.3.4. Differentiation. In view of (3.2), f(m) can be extended to a
continuous function (interpolating the values of f at integers) by

f(x) := 1
N

N−1∑
k=0

f̂(k)e 2πikx
N .

13To be precise, multiplying one by the conjugate of the other. Details . . .
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Exercise 3.7. Show that “differentiation becomes multiplication” un-
der Fourier transform:

f ′(x) = 1
N

N−1∑
k=0

2πik
N

f̂(k)e 2πikx
N ,

so that 2πik
N
f̂(k) is the kth Fourier coefficient of f ′.

3.4. Applications of Fourier transforms (and series). Since they
decompose a function into constituent frequencies, one expects that
they should be very useful for studying waves – or, in engineering
jargon, signal processing. Computer generated holography is a good
example: in the photonics lab of my youth, we set up a 4-F system
(the “F” means focal length) with two identical lenses, a laser, and an
LCD filter controlled by the computer:

laser

F F F F
"4F system"

screenlens lensfilter

f f

gg f. f*g

or input
image

The idea was to “program the filter with f̂”, so that the first lens
converted the laser beam into a broad sheet of light, which then was
converted to f̂ by the filter, and Fourier transformed to the desired
image f by the remaining lens. Since the filter was pixellated, this was
done via the DFT. Unfortunately, a filter just blocks light, and doesn’t
delay it, so you can only alter the amplitude of the light wave and not
its phase; that is, you can’t “program the filter with” f̂ (a complex-
valued function), but only with a positive-valued function. Finding the
best such replacement for f̂ was part of the object of study.

A 4-F system can also be used for image recognition. If we want
to recognize f , then we should construct a filter that “multiplies by
f̂”; in view of §3.3.3, the input g is then converted to f ? g by the
system. If the screen records a function with a sharp peak, then we’ve
spotted f ; and the location of the peak even guides our “smart” missile
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toward its target. For while there may be actually smarter uses of
image recognition than to blow stuff up, the ethos14 of “defense” as a
driving force for STEM seems ineradicable, dating back (at least) to
Archimedes’s creative use of mathematics to liquidate Roman soldiers.

More peaceable applications to signal processing include the removal
of “noise” from old sound recordings and aerial photographs, as well as
data compression – which might be achieved, for example, by applying
the DFT to 8 × 8 pixel sets and throwing out the unimportant “fre-
quencies”. (This is why your nice digital photos are only 1 megabyte
and not 10.) In point of fact, it is the more flexible wavelet transform
that is preferred for these applications, as well as in CT and MRI scans.
The point is that replacing “sine waves” by (translates and dilations
of) a “wavelet” tailored to the specific problem (removal of coughs?
storage of fingerprints?) yields better results and greater efficiency.

To give an idea of its scope, here are just a few more uses of Fourier
series/transforms:

• Solving partial differential equations, like the heat equation
(this makes use of the property in §3.3.4);
• Designing earthquake-proof buildings, by making sure that their
vibration modes avoid the domain of the Fourier transform of
the local seismograph’s output;
• Finding the structure of large biochemical molecules (e.g. DNA)
by X-ray diffraction;
• Radio reception, sonar, astronomy;
• Music, voice (used in vocal labs), birdsong study;
• Number theory: e.g., the efficient multiplication of large num-
bers (via a variant of §3.3.3, applied to polynomial multiplica-
tion).

In what follows, we’ll see how the DFT can be used to evaluate certain
infinite series in terms of Bernoulli numbers and powers of π.

3.5. Infinite inverse power sums. Recall the Bernoulli numbers

Bk = 1,−1
2 ,

1
6 , 0,−

1
30 , . . .

and the generating function

(3.4)
∑
n≥0

Bk
tk

k! = t

et − 1 .

14or maybe it’s just the money
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Now by applying L’Hôpital (cf. Remark 2.14) twice, we have

lim
t→0

( 1
et − 1 −

1
t

)
= lim

t→0

t− et + 1
tet − t

= lim
t→0

1− et
tet + et − 1 = lim

t→0

−et

2et + tet

= −1
2 .

So near t = 0, 1
et−1 looks approximately like 1

t
− 1

2 . Moreover, it has
poles whenever et = 1, which happens when t is 2πi times an integer.
More precisely, using complex analysis, one can show that

(3.5) 1
et − 1 = 1

t
− 1

2 +
∑
n 6=0

( 1
t− 2πin

+ 1
2πin

)
since the difference of the two sides is bounded and free of poles. Now
the sum on the right-hand side of (3.5)

=
∑
n>0

2t
t2 − (2πin)2

=−
∑
n>0

2t
(2πin)2

∑
k≥0

t2k

(2πi)2kn2k

=
m=k+1

−
∑
m≥1

t2m−1

(2πi)2m

(
2
∑
n>0

1
n2m

)

=−
∑
m≥1

(−1)mt2m−1

(2π)2m 2ζ(2m).

Here
ζ(x) :=

∑
n≥1

1
nx

is the famous Riemann zeta-function, subject of perhaps the most
celebrated unsolved problem in number theory.15 Since the left-hand
side of (3.5) is given by (3.4), we conclude that

∑
n≥0

Bk
tk

k! = 1
t
− 1

2 −
∑
m≥1

(−1)mt2m−1

(2π)2m 2ζ(2m),

which immediately yields

15The Riemann Hypothesis is one of the six unsolved million-dollar Clay
Millenium Problems: in 1859, Riemann conjectured that if we extend ζ to a function
of a complex variable x+ iy, then its zeroes that are not at negative even integers
lie on the line x = 1

2 . It has profound implications for the distribution of the prime
numbers.
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Theorem 3.8. B2m+1 = 0 for m ≥ 1, and

B2m = (−1)m−1(2m)!2ζ(2m)
(2π)2m .

So we finally get our proof that the odd Bernoulli numbers vanish,
and we can also evaluate the “even” Riemann zeta-values in terms of
even Bernoulli numbers and powers of π:

ζ(2m) = 1 + 1
22m + 1

32m + · · · = (2π)2m|B2m|
2 (2m)! ,

as proved by Euler in 1739. The first couple of examples are

ζ(2) = 1 + 1
4 + 1

9 + 1
16 + · · · =

(2π)2 1
6

2 · 2 = π2

6
and

ζ(4) = 1 + 1
16 + 1

81 + 1
256 + · · · =

(2π)4 1
30

2 · 4! = π4

90 .

We learn nothing about the odd zeta-values ζ(3), ζ(5), and so forth,
which are much more mysterious.16 But perhaps we can shed some
light on some series with odd powers in the denominator, like 1− 1

33 +
1
53 − 1

73 + · · · ? How?

3.6. Bernoulli polynomials revisited. Since the generating func-
tion of the Bernoulli numbers was so helpful, what happens if we play
the same game with Bernoulli polynomials? (Recall that these are given
by Bk(x) := ∑k

j=0

(
k
j

)
Bjx

k−j.) We compute

∑
k≥0

Bk(x)t
k−1

k! =
∑
k≥0

k∑
j=0

(
k

j

)
Bjx

k−j t
k−1

k!

=
`=k−j

∑
`≥0

∑
j≥0

(
j + `

j

)
Bjx

` t
j+`−1

(j + `)!

=
∑
j≥0

Bjt
j−1

j!
∑
`≥0

(tx)`
`!

= etx

et − 1 ,

16That ζ(3) is not a rational number was only discovered (by R. Apéry) in 1978,
and its transcendentality is (while expected) not known. We don’t yet have a proof
that ζ(5) is irrational! On the other hand, being rational multiples of powers of π,
the even zeta values are all transcendental, that is, satisfy no polynomial equation
with rational coefficients.



34 MATT KERR

where we have used (j+`
j )

(j+`)! = 1
j!

1
`! . Again appealing to complex analysis,

the last expression

=
(1
t
− 1

2 + x
)

+
∑
n6=0

(
e−2πinx

t+ 2πin
− e−2πinx

2πin

)

=
(1
t
− 1

2 + x
)

+
∑
n6=0

e−2πinx

2πin

∑
��j≥0
j≥1

(−1)jtj
(2πin)j ���− 1


=

j=k−1

(1
t
− 1

2 + x
)

+
∑
k≥2

(−1)k−1tk−1

(2πi)k
∑
n6=0

e−2πinx

nk
.

Comparing coefficients of tk−1, we conclude that

(3.6) Bk(x) = (−1)k−1k!
(2πi)k

∑
n6=0

e2πinx

nk

for all integers k ≥ 2.

3.7. L-functions. These generalizations of Riemann’s zeta function
are very important in number theory. The basic examples are obtained
by taking F ∈ Φ(N) and defining17

L(F, x) :=
∑
n>0

F (n)
nx

.

Certain of their “special values” L(F, k) at positive integers have a
beautiful connection to the DFT and Bernoulli polynomials. For com-
putational convenience, we define “symmetrized” L-values

L̃(F, k) :=
∑
n>0

F (n) + (−1)kF (−n)
nk

=
∑
n6=0

F (n)
nk

.

Now consider f ∈ Φ(N). For ` ≥ 0, (3.6) yields
N−1∑
a=0

f(a)B`+2
(
a
N

)
= (−1)`+1(`+ 2)!

(2πi)`+2

N−1∑
a=0

f(a)
∑
m6=0

e−2πima/N

m`+2

= (−1)`+2(`+ 2)!
(2πi)`+2

∑
m 6=0

1
m`+2

N−1∑
a=0

f(a)e−2πima/N

︸ ︷︷ ︸
f̂(m)

hence
17This gives ζ(x) if F is identically 1.
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Theorem 3.9. The symmetrized L-values are given by

L̃(f̂ , `+ 2) = (2πi)`+2

(−1)`+2(`+ 2)!

N−1∑
a=0

f(a)B`+2
(
a
N

)
.

In particular, if f is Q-valued, then (although f̂ usually will not be)
L̃(f̂ , `+ 2) ∈ (2πi)`+2Q.

Exercise 3.10. Take N = 4, and f(0) = 0, f(1) = 1, f(2) = 0,
f(3) = −1.

(a) What is f̂?
(b) Write L̃(f̂ , 3) as a sum over m ≥ 0.
(c) Evaluate the sum using the Theorem.
(d) Conclude that ∑m≥0

(−1)m
(2m+1)3 = π3

32 .

So what about Catalan’s constantG := ∑
m≥0

(−1)m
(2m+1)2 ? or∑m≥1

1
m3 (=

ζ(3))? The problem is that the “normalization” L̃ in both cases is
zero, due to cancellation of F (n) and (−1)kF (−n). So the Theorem
does nothing to demystify these numbers; and indeed, we don’t know
whether G is irrational.

Our Theorem 3.9 is the “one-dimensional” analogue of a result for
functions on Z/NZ × Z/NZ, which allows one to define something
called the horospherical map. With a significant amount of work, it led
to the proof of an analogue of the Hodge Conjecture for modular curves
by A. Beilinson, one of the great achievements in arithmetic geometry
of the last half-century.

4. Further reading

I conclude with a short list of articles and monographs which fur-
ther develop several of the themes in this essay. The combinatorial
angle is represented by Stanley’s survey article [3] and the paper [1],
in which you will find many other interpretations (topological, proba-
bilistic, geometric) and generalizations of updown numbers, as well as
ample references. If you would like to learn more about Fourier series
and transforms, the first volume [4] of Stein and Shakarchi’s “Lectures
in Analysis” assumes only an acquaintance with the Riemann integral
from high-school calculus; to get an idea of how wavelets are differ-
ent, see Strang’s short note [6]. As for number theory and Riemann’s
hypothesis in particular, look no further than the beautiful book [2].
Finally, if you would like to learn more about the lives of mathemati-
cians like Euler, Fourier, Gauss and Riemann, pick up the incomparable
Ian Stewart’s new book [5].
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